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This is a review on studies in QSAR and 3D-QSAR performed by the QSAR-group of Timişoara over a period of 
more than thirty years. The main interest of our group was the inclusion of molecular stereochemistry in QSAR. The 
main contributions are the minimal steric difference MSD and the minimal steric topologic difference MTD methods, 
introducing of new molecular shape descriptors and of new topologic indices. Among them, the MTD method is 
considered as a precursor of modern 3D-QSAR. The main QSAR applications are also described – the most 
important QSPR-type studies for dye–cellulose fibre interactions. Contribution to, and especially applications of 
several modern techniques, such as CoMFA, neural networks, ligand-receptor docking and interactions, classifications in 
large data bases are also described. 

INTRODUCTION1 

Interests in QSAR appeared in Timişoara soon after publication in 1964 of the first JACS QSAR paper 
of Hansch.1 It was the late R. Vâlceanu, at the Chemical Research Centre of the Roumanian Academy in 
Timişoara, who founded an informal group for studies in Quantitative Structure-Biological Activity 
Relations. A. Chiriac, then doctoral fellow of Vâlceanu, Z. Szabaday and Z. Simon were the first members of 
this group. The first paper2,3 was published in 1972 and used the MLR technique of Hansch. Interest in 
QSAR appeared at about the same time also in other groups in Roumania at the Chemico-Pharmaceutical 
Research Institute (ICCF) in Bucharest and at the Organic Chemistry Department of the “Babeş-Bolyai” 
University in Cluj which published also the first Roumanian QSAR book.4 

In the early 70s, classical Hansch QSAR proved quite successfull with hydrofobicity and substituent 
reactivity as structural variables, but description of molecular stereochemistry was given, at the best, by 
rather artificially introduced indicator variables. The description of molecular stereochemistry for QSAR 
became main item for the Timişoara QSAR-group. QSAR studies were soon performed also at the Chemistry 
Departments of the University, of the Polytechnical Institute and at the Biophysics Department of the 
Medicinal Institute – all in Timişoara. Until 1990 only Roumanian computational technique was available to 
our group. Thereafter several modern computers and drug design programs become available, largely due to 
M. Bohl (then at TRIPOS, Germany) and to T. I. Oprea (then at ASTRA ZENECA, Sweden). 

MINIMAL STERIC DIFFERENCE (MSD)  

Let us consider a series for the QSAR of N molecules (ligands), Li, i = 1,2,..., N. The idea of MSD is 
that each potential ligand Li should fit at the best into the binding site of the receptor and that, the larger the 
ligand-binding site misfit, the lower the affinity (the biologic activity Yi)5 – Fisher’s old “key-into-lock” 
idea.6 The molecules are superposed, atom per atom, upon the “standard”, L0, the natural effector or the 
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molecule (from the QSAR series) with the highest activity, which is supposed to fit perfectly the binding site. 
For molecule Li, one counts the non-superposable atoms and this is MSDi. 

In the superposition process the Li molecules are oriented according to a common molecular core or 
according to overlapping of the “pharmacophore atoms”. If a molecule has several low energy conformations 
one retains the one with maximal superposition upon L0 (lowest MSD). In the superposition process, the 
small atoms are neglected, as well as small differences (0.5 Å) between bond lengths and bond angles. The 
superposition procedure is the one the organic chemist would adopt; it depends strongly on chemical 
intuition. There may appear biases, especially if different condensed cycles are to be superposed. Sometimes, 
for the more voluminous third and higher period atoms, 1.5 or 2 units are considered, instead of 1, for second 
period atoms. The superposition procedure of the MSD method is certainly more realistic for ligand-receptor 
interactions than the previous procedures of Amoore7 or Allinger8, based upon superposition of molecular 
gravity centers and main axis. Details for the superposition procedure can be found in9. 

The superposition procedure gives rise to a network, the hypermolecule, Ĥ , with M vertices  
(j = 1,2,...,M) corresponding to approximate atomic positions and edges corresponding to valence bonds 
between atoms. The hypermolecule can be considered also as a molecular graph, with all the topological 
consequences. Each molecule Li can be described by a “vector” with M components, xij (xij = 1 if vertex j is 
occupied in Li and 0 if not), or by k such “vectors”, characterized by xijk, if there is more than one 
conformation (k) considered. Further details can be found in 10 (chap 3).  

As an example, the superposition of some L and D-amino acidic side chains is illustrated in Fig. 1, 
together with the corresponding hypermolecule with M = 8 vertices. As an example, the L-Phe side chain, 
considered as standard, L0, occupies vertices j: 2-8; the one of D-Ala j: 1; the one of L-His j: 2-5,7,8. For  
L-cyclohexyl-Ala, the cyclohexyl ring, in chair conformation, is considered superposable upon the phenyl ring. 
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Fig. 1 – Superposition and MSD values for some amino acidic side chains and hypermolecule; L-Phe as standard L0. For 
  MSD of L-Cys, value in parenthesis (4,5) for the SH-group as 3rd period atom, considered with a relative 1.5 volume value.  

 
In the first publised MSD-paper,5 MSD-biologic activity correlation was applied to a series of N = 42 

amino acidic substitution derivatives of oxytocine, with the decrease of biologic activity (on a logarithmic 
scale) produced by aminoacidic substitutions as Y. The correlational result, r2 = 0.56 is statistically 
significant and similar to the result obtained correlating the same Y-values with variations, produced by 
amino acidic substitution, in 6 intermolecular force types (hydrophobicity, aromatic character, electric charge 
at pH = 7, etc).3 For a series of N = 14 hydrolysis rates of amino acidic esters catalyzed by α-chymotrypsine 
r2 = 0.83 is obtained with MSD (r2 = 0.64 with hydrophobic increments), but only r2 = 0.02 for a series of  
N = 20 adenosinkinase catalyzed ATP phosphorylation rates of β-ribosides of nitrogen bases.5 For some 
other examples of MLR correlations with MTD and other structural variables see the Examples – paragraph 
of this review. Most, but not all results are statistically significant. 

The rather limited success of the simple MSD-method is not surprising. It is unlikely to have the 
receptor binding site as a perfectly complementary replica of the standard L0, even if this is the natural 
effector and that all supplementary (with respect to L0) atoms of the Li-molecules should produce detrimental 
effects. Some of these atoms could be in the exterior, aqueous solution, without influence upon the receptor 
affinity. 
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As example for all MSD and MTD variants, we list in Table 1 molecular structures, structural 
parameters and Y-values for the acetylcholine (AChE) catalyzed hydrolysis rates of N = 25 acetic acid esters 
(CH3COOR). The biological activities Y are logarithms of second order rates, as studied by Järv et al11. The 
corresponding hypermolecule12 is depicted in Fig. 2. The MSD values with respect to acetylcholine, the 
natural substrat of AchE, are also added to Tab. 1. 

Table 1  

CH3COOR hydrolysis rates catalyzed by AChE 

i R Y σ π ES MSD j(xijk=1) 
1 C6H5 6.72 0.60 2.13 0.38 4 2-6 
2 CH2CH2CMe3 6.30 0.00 2.98 0.40 0 4-8 
3 CH2CH2SEt 5.40 0.22 1.95 0.44 3 5-7,9 
4 CH2SEt 5.35 0.56 1.45 0.44 2 5-7;4-6;5,6,8 
5 CH2CH2CHMe2 5.32 0.00 2.30 0.43 1 4-7;4-6,8;5-8 
6 CH2CH2NO2 5.20 0.62 1.31 0.40 1 4-7;4-6,8;5-8 
7 CH2CH2Cl 5.02 0.39 1.39 0.48 3 5,6;6,10 
8 CH2C≡CH 4.81 0.55 0.94 0.60 5 6,11 
9 nC5H11 4.74 0.00 2.50 0.40 3 5-7,9 
10 nC7H11 4.75 0.00 3.50 0.40 5 5-7;9,12,13 
11 (CH2)4SEt 4.73 0.03 2.95 0.40 5 5-7,9,12,13 
12 cC6H11 4.71 0.00 2.51 0.98 4 2-6 
13 nC4H9 4.72 0.00 2.00 0.40 2 4-6;5,6,8;5-7 
14 nC6H13 4.68 0.00 3.00 0.40 4 5-7,9,12 
15 (CH2)3SEt 4.67 0.08 2.45 0.40 4 5-7,9,12 
16 CH2C6H5 4.66 0.25 2.26 0.38 5 5-7,10,14,15 
17 CH2CHMe2 4.32 0.00 1.80 0.35 4 5,6,10 
18 CH2CH=CH2 4.10 0.23 1.23 0.23 3 5,6;6,10 
19 nC3H7 3.91 0.00 1.50 0.39 3 5,6;6,10 
20 CHMeEt 3.69 0.00 1.86 0.93 4 1,5,6;2,5,6 
21 C2H5 3.36 0.00 1.00 0.36 4 6;2 
22 CH3 3.00 0.20 0.50 0.07 5 - 
23 CHMe2 2.72 0.00 1.30 0.93 5 2,6;1,2 
24 CMe3 1.30 0.00 1.98 1.74 6 1,2,6 
25 CMe2Et 1.30 0.00 2.48 1.74 5 1,2,5,6;1-3,6 

Y = log (kcat/KM) according to11; σ* – Taft constants; π – Hansch hydrophobicities, ES – steric constants, all quoted by Järv11, 
j(xijk = 1), vertices occupied in the hypermolecule of Fig. 2. Where several conformations for one molecule are listed, the first is 
used for MSD calculations. The standard, acetylcholine (CH3COOCH2CH2NMe3

+) occupies vertices j:4-8; AChE – acetylcholinesterase. 
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The results for the MLR-correlation with σ*, π and ES are12: 

 2 2
S CVŶ 3.111 3.0110 * 0.968 1.935E ;     r 0.779,     r 0.658(0.571)= + σ + π − = =  (1) 

Introduction of MSD improves the statistical results: 

 2 2
S CVŶ 3.903 2.914 * 0.906 1.548E 0.249MSD;    r 0.849,    r 0.726= + σ + π − + = =  (2) 

Crossvalidational results are on a leave one out basis; the result in parenthesis in on an ODD/EVEN 
basis (see next paragraph).  

Fig. 2 – Hypermolecule and vertex j numerotation12 for the acetic 
acid ester series of Table 1. Numbers in parenthesis, numerotation
of acetylcholine atoms in the complex with AChE, according to the
                               X-ray crystallography data13. 
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MINIMAL STERIC/TOPOLOGIC DIFFERENCE (MTD)  

The M vertices j of the hypermolecule Ĥ can be situated within three different regions with respect to 
the receptor binding site: interior of the cavity site-characterized by εj = -1, within the cavity walls – characterized 
by εj = +1 and in the exterior aqueous solution – characterized by εj = 0. Atoms occupying cavity vertices are 
expected to have a beneficial effect on the ligand-receptor affinity, atoms occupying wall vertices – a detrimental 
effect, atoms occupying exterior vertices – to be irrelevant for the affinity.14 The correlational equation is of 
the type:  

 i 0 1 1i i iŶ a a ... MTD= + σ + +β ;    i=1,2,...,N (3) 

with σ1i,... – other structural parameters characterizing molecule Li and MTDi its minimal steric difference – 
the number of occupied wall vertices plus the number of unoccupied cavity vertices: 

 i j ij
j

MTD s x= + ε∑ ;     j=1,2,...,M (4) 

Here s is the total number of cavity vertices. 
The εj – parameters, characterizing the three types of vertices are determined by an optimization 

procedure. One begins with an initial attribution of εj
0-values, characterizing the “start map” S0, often the L0 

standard of MSD or obtained by trial and error. The εj
0-parameters are changed one by one, and the 

monosubstituted map which yields the best correlation with eqs (3) and (4) is used for the next  
εj-monosubstitution cycle. The optimization ends when the maximal correlation coefficient r for the 

ˆY Y− correlation is obtained. The resulted εj-attributions represent the optimized receptor map, S*, and 
should give an idea for the shape of the receptor cavity. For further details concerning MTD see15 and10 
(chap. 3). 

The MTD-method has also a series of drawbacks. The construction of the hypermolecule is, 
sometimes, ambiguous. For different start maps, different optimized map, S*, are often obtained.16 Also if 
within the series for QSAR, a group of 2 vertices (a,b) are either unoccupied or both occupied by the  
Li-molecules, the attributions εa=εb=0; εa= -1, εb= +1; εa= +1, εb= -1 yield identical correlational results. 

Among the first MTD-QSAR studies is the one of Bădilescu and Simon17 for the affinity of  
N = 49 haptenes, mostly pyridine and succinylanilide derivatives against an antibody elicited by 3-azopyridine 
coupled to ovalbunine. With MTD, π and δ = 1 for the presence of an atom with lone electron pair in a 
certain position r2 = 0.78 results. Another MTD-QSAR18 with MTD and π for dihydorfolatereductase 
inhibition by N = 15 pyrimidine derivatives (alkyl, cycloalkyl, naphtyl as 5 substituents) r2 = 0.96 is 
obtained; for the Y-π correlation r2 = 0.59. The optimized receptor map compares favorably with some 
results of Silipo and Hansch19, by MLR, for a more extended series of triazine derivatives. 

Reliability of MTD results.10 The MTD-QSAR implies a rather large number, M of adjustable  
εj-parameters; often M > N. Following procedure is generally adopted: the N molecules of the series for 
QSAR are listed in decreasing order of Y-activities. The odd numbered molecules (i:1,3,5,...) are considered 
as a learning set, the even numbered (i:2,4,6,...)as test set; from the even numbered Li’s, those being the 
single occupants of a certain j-vertex are transferred to the learning set. The receptor map and correlational 
equation for the learning set are used to calculate the Ŷ -activities for the test series; the ˆY Y− correlation for 
the test set is used to obtain an r2

CV. This should be a more realistic approximation for the predictive power 
of the MTD-method. We call this the ODD/EVEN selection. 

Multiple low energy conformations.12 If some Li molecules have more than one low energy 
conformation, its minimal steric difference will be: 

 i j ijk j

MTD Min(s x k)= + ε∑ ;     j:1,2,...,M;    k=1,2,... (5) 

The conformation, k, which yields the lowest MTD-value (i.e., the one which fits best the receptor) is 
selected. 
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Problems related to the selection of conformations and their relative energies were first discussed in a 
QSAR on a series of phenyl and indolylacetic acid derivatives with auxinic activity.20 By hand calculations 
of repulsions (via 6-12 Lenard-Jones potentials) were also performed for some key conformations. 

After 1990, with access to computational molecular mechanics techniques, the statistical weights of 
various conformers were also considered.21 If several conformations are available for Li and only one is 
biologically active, the actual concentration of this active conformer is lower than the one of Li, the adj

iY  
activity higher than the experimental, Yi for the mixture of all conformers of Li: 

 adj
i i iY Y log= − α ;    

a

k

U kt

i U kT
k

k

e
g e

−

−α =
∑

 (6) 

Ua and Uk are internal energy of the active and other conformations, ga and gk statistical weights (of 
isoenergetic conformers). This is the MTD-adj method.21  

For the series of N=25 acetic esters in AChE catalyzed hydrolysis rates of Table 1, the hypermolecule 
has M = 15 vertices and some molecules have up to 3 conformations. The Ĥ  was constructed with a minimal 
number of vertices, so that it includes at least one conformation for each molecule. The optimized receptor 
map is depicted in Fig. 3, the correlational equation ( 2

CVr  on an ODD/EVEN - basis):12 

 2 2
* CVŶ 8.434 1.683 0.753MTD;      r 0.867,      r 0.661= + σ − = =  (7) 
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In the QSAR with the MTD-adj method for the same series, a more complete investigation of low energy 
conformations using molecular mechanics techniques gives a Ĥ  with a total of M = 64 vertices. The receptor 
map has an increased number of cavity and wall vertices, with most cavity vertices concentrated in the region 
occupied by the acetylcholine molecule. The correlational equation is ( 2

CVr  on an ODD/EVEN-basis):21 

 * 2 2
CVŶ 12.913 2.956 0.878MTD;      r 0.966,      r 0.810= + σ − = =  (8) 

The SIBIS and HIBIS methods. Topologic restrictions in receptor map optimization. Some interesting 
variants of the MTD method which prefigurate the MTD-PLS receptors mapping were developed by Motoc 
and Dragomir-Filimonescu, the SIBIS and the HIBIS-methods.22-24 Cavity and wall vertices are considered 
separately in these methods. In SIBIS, atoms or groups occupying a j vertex are described by a steric kp 
parameter introduced by Anstel et al25 (i.e., xij=kp – if occupied, 0 – if not) in HIBIS – by Recker hydrophobic 
fragmental constants.26 Separate steric differences are calculated for cavity and wall vertices. In SIBIS: 

 * * * *
c,i ij w,i ij i s s c,i s w,i

j(c) j(w)

ˆSD x ;         SD x ;         Y a b SD c SD= = = + +∑ ∑  (9) 

i.e., summation is performed over the cavity and respectively wall vertices. In HIBIS: 

 2
i ij i H H i H i

j(c,v)

ˆf x ;         Y a b f c f= = + +∑  (10) 

the summation is performed over both cavity and receptor walls. 

Fig. 3 – Optimized receptor map of AChE catalyzed
CH3COOR-hydrolyses (see Table 1)12. Vertex j
attribution, o-cavity vertices; ● wall vertices; • exterior,
irrelevant vertices. Common core vertices (atoms)
                         are not numbered (as j). 
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In the receptor map optimization procedure of SIBIS and HIBIS, two topological restrictions are 
introduced. First – the j-cavity vertices of the receptor map should form (via edges in Ĥ ) a single connected 
graph. Second – the exterior (irrelevant) vertices j should also form a single connected graph; prior to 
optimization, the j vertices “suspected” to be exterior are connected, by virtual edges, to a common, virtual 
exterior vertex.22 A result of these topological restrictions is an improved “stability” of the optimization 
process – the same optimized receptor map for different start maps.24 

This first topologic restriction was adopted also in some MTD papers:27,28 the (nonnumeroted) vertices 
of the common molecular core and the cavity vertices are forced to form a single connected graph. This 
corresponds to a unique, nonfragmented receptor cavity – a reasonable assumption. The second condition 
seems too restrictive: only marginal groups of the molecules (and the corresponding j-vertices) will be into 
the exterior, outside the receptor, it is unlikely to have them connected.28 Some comparative MTD studies 
with different topological restrictions were performed for a series of cardiotoxic bufadienolides and 
cardenolides which were divided into a learning set of N=30 steroids and a test set of N=16 steroids.22,29 The 
receptor map and correlational equation for the learning set were constructed in three different ways. First, 
only the connectivity restriction for cavity and common core vertices was used and from equivalent (as r2) 
optimized receptor map, the one with a minimal number of cavity and wall vertices was selected;27 r2=0.72 
was obtained for the learning set, 2

CVr 0.63=  for the test set. In a second MTD study without connectivity 
restrictions, five different start receptor maps produced five different optimized receptor maps;29 for the 
receptor map r2 = 0.84 was obtained for the learning set, but only 2

CVr 0.40=  for the test set. In a third SIBIS 
study both connectivity restrictions were used but, from a total of M=24 (non-common core) vertices, only  
6 (j:2,3,8-10,16) were connected to a virtual exterior vertex22,29; for the learning set, r2 = 0.67 was obtained 
but only 2

CVr 0.10=  for the test set.28 Thus, the optimization with a single connectivity restriction (cavity + 
common vertices) yields the best results for the test set. 

Other optimized receptor maps, which respect the connectivity restriction for cavity + common vertices 
are depicted in Fig. 2 and Fig. 7, while the optimized map of Fig. 6 does not respect this restriction. 

RECEPTOR SITE MAPPING. MTD-PLS 

Mapping of receptor sites is a “dream” for QSAR and 3D-QSAR, probably also, as intention of the 
creators of CoMFA.30 There is a difficulty: in any QSAR approach, a certain (difficult to define) quantity of 
pertinent information is introduced by molecular structure parameters and especially by the biologic 
activities, Yi, of the N molecules considered. This information seems to be proportional to N-1. To describe 
the receptor site, various parameters such as atomic electric charges, van der Waals and hydrogen bonding 
characteristics, local deformabilities should be given for the dozen of atoms of the receptor site. According to 
Topliss31,32 in order to avoid chance correlation, in MLR-QSAR, the number N of Yi’s should be at least  
3-4 times larger than the number M of structural parameters to be characterized. This seems to be a result of 
some principle of constancy of pertinent input to output information and is certainly true for any QSAR-type 
procedure, including CoMFA.33 

The basic idea of the MTD-PLS procedure34 was to characterize atoms occupying the vertices of the 
hypermolecule by parameters characterizing an as realistic as possible force field,35 inspired by scoring 
functions used to calculate ligand receptor affinities.36 Supplementary input information is introduced by 
some chemical intuition based restraints: steric misfit is always detrimental, hydrophobic interactions-
beneficial (the receptor site is, usually, much less polar than the surrounding water). Due to the large number 
of structural parameters (number M of vertices multiplied by the times number of intermolecular force types 
considered), a PLS technique had to be used. 

As precursor of the MTD-PLS approach the work of Palyulin et al.37 is to be considered; they 
characterized atoms occupying hypermolecule vertices, j, by different parameters used in other types of 
QSAR, but these cannot be consistently related to a realistic force field. Also, the SIBIS and HIBIS methods 
of Motoc et al.22,23 use steric Anstel parameters, respectively Rekker fragmental hydrophobicities to 
characterized atoms occupying j’s and impose graph theory-based restrictions on the optimization procedure 
used in obtaining the correlational equation. 
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The correlational equation used for MTD-PLS is of the type 

 
n

i 0 jV ij jH ij jp ij jS ij jA ij jD ij
j 1

Ŷ a (a V a H a P a S a A a D )
=

= + + + + + +∑  (11) 

Here, Vij, is the fragmental van der Waals volume of the atom (XHn-group) occupying vertex j in 
molecule i, Hij the fragmental hydrophobicity of the same atom, Pij the polarisability (van der Waals atraction 
is proportional to the product of polarisabilities of atoms), Sij – the electric charge (as resulted from the 
quantum chemical calculation included in modern molecular mechanics programs);40 Aij and Dij – parameters 
characterizing proton acceptor, respectively donor tendencies in hydrogen bonding. 

Applied to a series of N = 69 dioxin analogs and polyhalogenated biphenyls,34 the first PLS model with 
105 descriptors (less than the theoretical 6 × 21; no atoms with hydrogen bonding abilities are included), 
yields 2

Yr 0.728= , q2 = 0.553 for correlation with AHH-activity (induction of aryl hydrocarbon hydroxylase). 
The final PLS-model, with 43 molecules and 52 descriptors yields 2

Yr 0.819= , q2 = 0.732. The attribution of 
beneficial or detrimental character to atoms and vertices is in good agreement with vertex attribution by 
MTD to the same series (59 chlorinated-only, derivatives); for this MTD study,38 r2  = 0.699, 2

CVr 0.728= . 
Nevertheless, in this study, there appear also positive ajV –coefficients (beneficial steric misfit!) or negative 
ajH –potential (detrimental hydrophobic interactions!). 

In order to have steric interactions always detrimental, hydrophobic and polarisation-favored interactions 
always beneficial, following restraints were introduced for the “correlation coefficients” of eq. (11): 

 ajV ≤ 0;     ajH ≥ 0;    ajP ≥ 0 (12) 

The colums of variables for which the ajµ-coefficients do not satisfy conditions (12) are simply 
eliminated and, hereby, some pertinent input is introduced in the MTD-PLS approach.39 

This MTD-PLS approach was applied to the AChE catalyzed CH3COOR hydrolysis rates of Table 1 
(Chap. 3). This first MTD-PLS model with all N = 25 molecules and 49 structural variables (electric charges 
of atoms of the common CH3COO moiety were also introduced) yields 2

Yr 0.835= , q2 = 0.597, while for the 
final model with N = 22 molecules and 41 variables (Vij, Hij, Sij) - 2

Yr 0.949= , q2 = 0.796. 
The ajµ-coefficients of the corresponding type (11) equation were compared with X-ray crystallography 

data for the AChE-acetylcholine complex.13 Results are given in Table 2. The carbonylic atom >C= (5) is at 
3 Å from one imidazolic N-atom of His from the catalytic AChE – site. According to an AM1 calculation,40 
this N-atom has a partial charge of -0.191e; ajS = -30.65e requires, for a coulombian potential created by an 
receptor atom at 3 Å distance a partial charge of -0.39e for this atom. The negative ajV values for j=1,2,6 are 
explained by the only 2.8 Å distance of –CH2- (j=6) to a receptor atom and, for vertices j:1 and 2 by their 
protrusion into the wall of the receptor gorge. The three CH3 groups of –N(CH3)3

+ are in several contacts (at 
van der Waals distances) to the Phe,330 His440 and Trp84 aromatic side chains which explains the significant, 
positive, ajP – coefficients for j: 4,7 and 8. The CH3-group in j:7 is in contact with the OE 1 atom of the 
Glu194 side chain (negatively charged at pH 7), which explains the negative a7S=-0.70 coefficient. Other  
ajµ – coefficients are also at least nonconflicting with expectations for contacts with the AChE site for vertices not 
occupied by acetylcholine.39 Some pertinent ajµ-values and ligand-receptor atoms are given in Table 2. 

The final PLS-model has a total of 13 vertices and M = 43 structural variables, with N = 22 biologic 
activity (Y) data. There are a total of 39 × 3 = 117 type eq. (12) restrictive conditions which eliminate  
15 columns of structural parameters. The input/output quotient is certainly not enough to satisfy the Topless 
conditions31 concerning chance correlation, but comparison of the ajµ-coefficients with X-ray crystallography 
contacts is encouraging. 

The MTD-PLS method with restrictive conditions (12) was applied also to a series of N = 49 estrogen 
derivatives with agonistic activity.41 The hypermolecule has 35 vertices. For the initial PLS-model  
(99 descriptors) 2

Yr 0.808= , q2 = 0.369. The final PLS model, based upon only N = 19 molecules (27 descriptors) 
is statistically satisfactory: 2

Yr 0.942= , q2 = 0.757. The main results, concerning ajµ values – steric misfit for 
the steroidic position 2, benefic hydrophobic and polarisability enhanced van der Waals interactions for  
17α-CH=CH-X groups are confirmed by ligand-receptor contacts based on X-ray crystallography, even the 
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first, statistically weak, PLS model yields ajµ-results consistent with X-ray crystallography for position with a 
sufficient high variability in substituents.  

Table 2 

Comparison of ajµ coefficients39 with X ray crystallography data for the AChE-acetylcholine complex13. Final PLS-model39 

ajµ 
Atom r (nr) 

µ=S V P H AChE-acetylcholine contacts 

-CH3 (6) 1.84 - - -  
-O- (4) -1.05 - - -  
>C= (5) -30.65 - - - 3 Å from N(imidazole)His catalytic site 
=O (7) 23.72 - - -  

-CH3 4 (8) 0.05 - 0.075 0.293 
All three CH3 groups in numerous contacts with 

hydrophobic aromatic side chains of Phe330, His440, 
Trp84 

-CH3 8 (9) 6.56 - 0.067 0.443 Contact to OE1 (negative charge) of Glu199 
-CH3 7 (10) -0.70 - 0.042 0.149  

 5 (1) 0.24 - 0.029 -  
-CH2 6 (2) 0.40 -0.031 -0.023 - 2.8 Å to CD2-His440 

 1 -12.68 -0.017 -0.067 - 

 2 -10.40 -10.40 -0.058 - 

 
The CH2CH2 –moiety of acetylcholine is in a narrow 
gorge of AchE; vertices j = 1,2 penetrate the walls of 

this gorge 

MOLECULAR SHAPE DESCRIPTORS 

Steric parameters in QSAR like those introduced by Charton, Taft, Verloop and Hogenstraten should 
be related to the shape of molecules or substituents. In order to study their physical significance one is 
interested in the geometric characteristics of the corresponding substituents – described as envelopes of the 
component atoms described by hard spheres of van der Waals radii. These characteristics are van der Waals 
volumes and surfaces (VW, SW) and synthetic shape indicators, some with vectorial characteristics – termed 
also as molecular van der Waals space. They are interesting also in relation to the physical significance of 
topologic indices.42 

Molecular volumes and surfaces by Monte Carlo method.43,44 The space occupied by a molecule can be 
described, in the approximation of hard spheres as follows: each atom j of molecule L is represented by an 
isotropic sphere, centrated at xj, yj, zj with the van der Waals radius, W

jr . The points (x,y,z) within the 
interior of the molecular envelope satisfy at least one of the condition: 

 2 2 2 W 2
j j j j(x x) (x y) (x z) (r )− + − + − ≤ ,    j:1, 2, … m (13) 

with m, the number of atoms within L. The molecule L is within paralelipipedium of volume VP. By a Monte 
Carlo technique, a number nT of points are generated within the paralelipipedium, n of them satisfy at least 
one condition (13), i.e. – they are within the interior of L. The van der Waals volume of L will thus be: 

 W
L P

T

nV V
n

=  (14) 

In order to calculate envelope surfaces, a total of nT points are generated on the surface of each atom  
j via randomly generated polar θ, ϕ coordinates. Of these, nej –points are contained in neither of the other 
atomic spheres of L (i.e., – satisfy neither of the m type 13 conditions). The van der Waals surface, W

LS is 
calculated as:45 

 W W 2ef
j j

T

n
S 4 (r ) ;

n
= π     W W

L j
j

S S=∑ ;    j = 1, 2, …, m (15) 
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Direct volume and surface calculation, by tridimensional geometry, for envelopes of interesting hard 
spheres is cumbersome, which makes the Monte-Carlo calculations a much easier way; their reliability has 
been assessed by comparing results with other, more conventional, calculations.44 

A Monte Carlo method was used also in modeling and simulation of copolymerization reactions46. 

MCD-version of MSD.47 MSD between two molecules was calculated also as the minimal nonoverlapping 
van der Waals envelope volumes via the Monte Carlo method, using type (13) condition to determine the 
appartenance of random points to the nonoverlapping envelopes. With nI – the number of such points: 

 I
P

T

nMCD V
n

=  (16) 

Molecular superposition, etc, is the same as for the simple MSD-method. As an application, let us 
mention the correlation of affinity for an anti-(p,p’-azophenylazo)benzoate antibody of N = 11 substituted 
benzoic acid derivatives.47 The highest affinity molecule, 4-Cl-benzoat was used as standard. The affinity 
MCD – correlation yields r2=0.46. 

Synthetic shape indicators were developed, on hand of van der Waals envelopes, with the aim to 
analyze the difficulties related to the quantitative estimation of the molecular shape and of the effects in the 
QSAR and chemical reactivity.48 By some principles of analytical geometry, for each substituent a rotational 
ellipsoid results, and the semiaxes (a, b, c) constitute a first set of shape indicators. Other shape indicators are 
obtained from the equivalent radii, r(VW) and r(SW), for the volume and respective area of the substituent’s 
van der Waals envelope: 

 
1/ 3W

W 3Vr(V )
4

 
=  π 

;    
1/ 2W

W Sr(V )
4

 
=  π 

 (17) 

The quotient VW/SW = RWV can be used as a measure for the “spheric (globular) character” of the 
substituent – the smaller RWV – the more near to sphericity the substituent. As example, for eclipsated n-Bu, 
RWV = 0.716, for the intercalated conformer -0.705, the lowest value is for the t-Bu radical. 

The rotational parameters δ, G were introduced in an attempt to quantify the vectorial nature of steric 
effects. G is here the maximal length of the substituent along the direction of the valence binding the 
substituent to the molecular core, δ – the radius of a cylinder with the volume equal to the substituent’s VW 
and the axis equal to G. 

Charton-like parameters, '
Vυ  and '

Sυ  were defined for substituents as: 

 ' W
V r(V ) 1.2υ = − ;     ' W

S r(S ) 1.2υ = −  (18) 

and correlated with the corresponding υ-Charton parameters in order to test its physical significance. There 
is a satisfactory correlation only when substituents have a general spheric (tetrahedral) type of shape, but fail 
when substituents of different shapes are considered together. The empiric υ-Charton is related to a mean 
radius (r(VW), r(SW)) only for substituents with a shape near to a tetrahedral symmetry. Several other 
correlations with these shape indicators and various empirical steric constants for substituents were also 
studied.49-51 

Pattern recognition. A package of programs with theoretic-decisional and statistic methods, SARF, 
was constructed for QSAR, recognition of bioactive compounds and for other applications.52 Pattern 
recognition were used in QSAR for quantification of topologic similarity. Two parameters were introduced, 
SDM and TSDM which quantify on a [0,1] scale the similarity, respectively dissimilarity, between 
molecules,53 somewhat inspired by the concepts of MSD and hypermolecule. They were tested, with good 
results on the inhibition of microsomal aniline oxidation (via citocrome P450) by alcohols.53 The SDM and 
TSDM can be used in setting up series for QSAR with a maximal dissimilarity between the considered 
molecules.54 

 Metric induced by minimal steric difference. According to Motoc,55 MSD verifies the condition 
imposed for a dissimilarity index for metrics56 in the context of QSAR, a results valid also for MTD and 
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MCD. MSD induces a Hausdorff space in the manifold M which describes (via hypermolecule) the steric 
structure of the molecules of the series for QSAR. 

 Topologic indices and their physical significance. New topologic indices were developed for 
structural quantification. Thus in order to differentiate heteroatoms, the van der Waals connectivity vAi was 
used to define a Randić index vAi = Aivi, with vi the valence of the vertex within the graph, while 

W W W
i i i iA r ,S ,V= , i.e., the van der Waals radius, surface or volume57. The reciprocal distance matrix: 

 }{ 1
j,lRD d−= ;       j,l = 1, …, n (19) 

with n-the total number of vertices for the molecular graph Γ , was used to introduce and generalize a series 
of nondegenerated indices. Such an index is µj, the local invariant of each vertex of Γ , defined as: 

 1
j jl

j

d ;       j 1,n−µ = =∑ ;       j≠l (20) 

with djl – the topologic distance between vertices j and l, n – the total number of vertices in Γ , thus µI is a 
measure for the influence of all vertices upon vertex j from the graph Γ . This local invariant µj was used to 
obtain various hδ -indices with a Randić type formula extended to the generalized molecular connectivities.59-61 
These indices were used in monoparametric correlations with molecular properties of alcanes (boiling 
temperatures, gas chromatographic retension indices, atomisation enthalpy, molar refraction) .62 Very good 
results were obtained with 2δ; r2 in the range 0.976 – 0.989. 

A total of 16 generalized indices for topological distances (GTD’s) were developed which contain also 
the previously described hδ and µj –indices. They were calculated for the 72 alkanes C2 to C9, for which van 
der Waals volumes, surfaces and some other molecular shape descriptors. They were used in correlations 
with various physical properties. Correlations between GTD’s and molecular shape descriptors based upon 
the molecular van der Waals space were also studied in order to understand the physical significance of 
topologic descriptors. The obtained results suggest that topological distance indices could be considered as 
descriptors for the size of molecules.58 

Introduction of the topologic molecular space (MTS) over the M molecules, which are associated with 
a complete set of topologic indices, allowed a unique characterization of the molecules by a distance index λd 
connected to models of pattern recognition. The analysis of the structure of λd allowed to obtain a general 
condition for nondegeneration.57,59,61,63 

MORE RECENT DEVELOPMENTS IN 3D-QSAR AND DRUG DESIGN METHODOLOGY 

Some QSAR studies using CoMFA were performed for series of symmetric and nonsymetric ureea 
derivatives used as inhibitors of HIV-protease.64,65 CoMFA as well as neural network methods67 were used in 
QSPR-type studies for dye-cellulose fiber affinities. 

Methodological contributions to CoMFA were also proposed: the steric potential, usually considered as 
a 6-12 Lenard-Jones potential presents an unrealistically steep increase below van der Waals contact 
distances. In the real case steric misfit will be circumvented by deformation of torsional and bond angles.35 A 
simple proportionality between steric repulsion energy and overlapping volume of ligand molecule (van der 
Waals envelope) and CoMFA probe atom was considered for this steric potential.68 In a CoMFA study with 
this type of steric potential, correlational results were similar to those obtained with the usual (6-12) 
potential, while stability of results (with respect to the positioning the molecule into the CoMFA framework) 
were improved.69 

Another recent field, developed by the group of Maria Mracec (collaboration with T.I. Oprea), is 
receptor ligand interaction in the active site of the receptor. The AUTODOCK 3.0.5 software was used to 
study the conformational flexibility and behaviors of  a series of ligands for the D2 dopamine receptors 
which can interact with both receptor states (high and low affinity states). One class of ligands fulfill the 
features of a pharmacophore model (proposed by Stark) for partial agonist. A 3D-model for the dopamine 
receptor was constructed based on X-ray data for bovine rhodopsin chains. Derivatives of 2-methylamino 
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chromans and indoles were docked at the agonist site of the D2 receptor. The results of the study indicate 
that although the shape and volume of the active site is large enough, only the (2R)-chroman conformer 
accomodates well in the receptor pocket and interacts by hydrogen bonds with Ser144 and by saline bridge 
with Asp.86 Features of a pharmacophore model for the second class of compounds was hereby identified.70 
This group developes also drug design technique based on classification and search in large databases, such 
as the concept of privilegiated structures (work in progress). 

ACETYLCHOLINESTERASE INHIBITING PESTICIDES: ORGANOPHOSPHORUS  
AND PHENYL-METHYL-CARBAMATE DERIVATIVES 

Organophosphorus pesticides and phenyl-methyl-carbamates (PX) act as acetylcholine esterase 
(AChE) inhibitors according to following sequence of reactions.71,72 

OH2PX + EOH RX EOH EOP + HX EOH + POH.
 

The pesticide molecule forms initially an absorbtion complex with AChE, followed, after the 
separation of the reactive leaving group, as XH, of a bond with AChE (E). Eventually, inhibition of AChE is 
released by hydrolysis. For Schrader type compounds and phenyl-methyl-carbamate derivatives, the leaving 
group, X, is -OR3 (the most reactive substiutuent) and the phenolic moiety, respectively: 

P
OR1O

R2O OR3

OCH3NHC
14

O R
 

One of the first published QSAR paper of the Timişoara group2 refers to a series opf N = 49 Schrader 
type compounds. Toxicity to mammals was correlated with 8 structural parameters (based on types of 
intermolecular forces); the MLR correlation with linear and quadratic terms yields r2 = 0.74. A second 
attempt73 extends the QSAR to a total of N = 71 molecules in a linear (only) correlation with the same 
parameters, to which MSD (standard-similar to acetylcholine) was added. An r2 = 0.50 is obtained and a 
statistically significant correlation with a σ-Hammett type (reactivity) parameter for the leaving group, R3. 

Several other MLR-QSAR’s were established with classical Hansch type parameters and MSD 
(different standards) for various series of organophosphorus compounds both as acetylcholinesterase and 
butyrylcholinesterase inhibitors.74-77 Inhibitors of acetylcholinesterase are rather strongly dependent on steric 
parameters and also on electric charge if the P-atom charge distance is similar to the carboxyl C atom-N 
distance in acetylcholine. For example for a series of N = 60 derivatives of the general type R1R2P(O)R3, 
with several positively charged R3-leaving groups (respecting the above mentioned distance condition) the 
main correlational results are:76  

 EC030.3MSD272.0CT028.0060.0136.0941.2Ŷ +−−σ−π+= φ ;     r2 = 0.77 (23) 

The standard used for MSD calculations, similar to acetylcholine, is depicted in Fig. 4; the partial Y-MSD 
correlation, r = -0.707, is also statistically significant. Other structural parameters: π – Hansch hydrophobicities, 
σφ – Hammett type constant, CT – charge transfer character for R3, EC – electric charge (R3). 

 

NCH2

CH3

CH2

CH3

CH2L0:
+

 
 

In short series of phosphoorganic derivatives, hydrophobicities and quantum chemical parameters yield 
sometimes good results, as well as MSD’s calculated for rather unrelated standards, usually suggested by the 
most active molecule. Butyrylcholinesterase inhibition is more strongly dependent on hydrophobicity and the 

(21)

(22)

Fig. 4 – Standard for MSD for AChE inhibition by phosphorganic compounds.76

Atoms bonded to free valences of L0 are considered in commnon molecular core
                  or in exterior solution and do not contribute to MSD. 
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electric charge; for a series of N = 148 inhibitors, the best biparametric correlation (r2 = 0.76) is the one with 
electric charge and reactivity (σ-Hammett) for the R3 leaving group.75,110 QSAR’s were performed for a 
series of N = 25 amides of o-halogenoalkyl phosphates with various alkylic substituents at the O and N –
atoms. The hypermolecule consists of M = 16 vertices. Molecular refraction, Kabachnik σ-constants and 
MTD were used as structural parameters. The best correlation, r2 = 0.82, is due mainly to MTD.108 The MTD 
method was applied also to map the site of acetyl cholinesterase phosphorylation for three series of 
phosphororganic derivatives:109 

 R1R2P(O)SCH2CH2N+(CH3)(R3)-C6H4R4; N = 24 (24) 

 R1R2P(O)SCH2CH2N+(CH3)(R3)R4; N = 20 (25) 

 R1R2P(O)SR3; N = 24 (26) 

The hypermolecule and receptor maps for the first two series are depicted in Fig. 5. With MTD and an 
indicator variable for positively charged N-atom (for first two series) correlational results between r2 = 0.71 
and r2 = 0.96 are obtained. 
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Fig. 5 – Hypermolecule and optimized receptor maps for acetylcholinesterase phosphorylation  

by phosphororganic derivatives, series (24) and (25). 
 

Several QSAR’s were established for a series of N = 97 phenyl substituted methyl phenylcarbamates.78,79 
With Hansch hydrophobicities, σ-Hammett constants, molar refraction and charge transfer character for the 
substituent R, r2 = 0.58 is obtained. Addition of MSD with respect to R of the most active molecule, gives,  
r2 = 0.64. A study with the MTD – method79 yields , r2 = 0.76 with MTD for the best optimized receptor map, 
depicted in Fig. 6 and the structural parameters of the previous paper. Five different start maps resulted in 
five different optimized map; the optimized map of Fig. 6 does not respect the single – connected condition 
for cavity plus common core vertices (see chap. 3). 

The QSAR’s for these two classes of AchE inhibitors have, as common characteristics, the dependence 
on the reactivity of the leaving group (σ-Hammett types constant) and are often favoured by a positive 
charge in this group. The rather variable QSAR results suggest different inhibitory mechanism, possibly by 
different spatial orientations of molecules adsorbed on AChE in the neighborhood of the catalytic site. 
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Fig. 6 – Optimized receptor map for AChE inhibition by 
phenyl-methyl-carbamates.79 Cavity vertices j:16, 19 and 28 
are isolated from the rest of cavity plus common core 
vertices which form a single connected graph. Significance
                       of o, ●, • vertices, see Fig. 3. 
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SOLUBILITY AND STERIC PARAMETERS 

Crystallization takes place usually with a single type of molecule. Cocrystallization is also often 
favored by similar shapes (of the main type and inclusion ions). In order to test if solubilities depend also on 
the shape similarity between solvent and solute molecules we correlated series of organic solvent: water 
partition coefficients (logPsolv:aq) with the MSD value of solute molecules with respect to the solvent 
molecule.80,81 For nitrobenzene as organic solvent, for logP vs. MSD correlation, for N = 16 organic 
molecules r = - 0.093 is obtained for toulene as organic solvent, N = 63; r = -0.177; for isobutanole, N = 103; 
r = 0.138; for 2-butanone, N = 7; r = -0.518. Experimental logPsolv data are from Leo, Hansch and Elkins.82 

Thus molecular shape, molecular similarity with the solvent molecule, are not correlated to solubility. 

REGULATION OF PROTEIN KINASES BY C-AMP DERIVATIVES 

The secondary messenger, cAMP binds against two classes of binding sites, A and B, of two types of 
protein kinases, cAKI and II, which are implied in regulation of cell proliferation. Finding cAMP derivatives 
binding more selective to these sites could be interesting for chemotherapy of cancer and other diseases.83 

QSAR-MTD studies were performed for each of the four binding sites (AI, AII, BI, BII) separately 
with affinities to these sites as biologic activities. First, a series of N = 27 cAMP derivatives with relatively 
small substituents in purine-position 1, 2, 6 and 8 (and N vs. substitution within the purine moiety), together 
with some (equatorial and axial) thiophosphoric acid derivatives were considered; the hypermolecule (Fig. 7) 
has M = 14 vertices.84 Other structural variables – logKW – nitrogen base hydrophobicity; q6 – electric charge 
in purinic position 6; indicator variable δ = 1 for equatorial S atom (δ = 0 otherwise). For binding to the AI 
site (A of cAKI) the optimized receptor map is depicted in Fig. 7, the correlational equation and results are: 

 2 2
6 CVŶ 1.171 2.004 1.836q 0.452MTD;  r 0.90;  r 0.85= − δ + − = =  (27) 

For all four binding sites, the correlational results are in the range r2 = 0.70 – 0.93, 2
CVr 0.40 0.85= − , 

not always satisfactory.84 
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The same method and correlational (EVEN/ODD) procedure was applied to a series of N = 94 cAMP 
derivatives with large substituents in positions 2, 6 and 8 (M = 74 vertices) with correlational results in the  
r2 = 0.53 – 0.96, 2

CVr 0.36 0.64= −  range.85 Two separate studies were performed for molecules with large 
substituents in position 2 (N = 21, M = 14) and with large, partially quiral substituents in position 8 (N = 32, 
M = 21), with the same type of structural parameters.85 

The combination of the four hypermolecules span a total of M = 67 vertices, 6 of which are common to 
3 hypermolecules, other 33 to 2 hypermolecules. Comparing the attribution of common vertices, only five have 

Fig. 7 – Vertex j numbering and optimized receptor
map for cAMP derivatives – affinity towards the
A-side of the cAKI-kinase83. Significance of o, ●, •
                       vertices, see Fig. 3. 
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different attribution in the 3 papers.84-86 Of the results, for the AI and BI receptors a high q6 –positive charge 
is beneficial for binding. BI and BII sites have a marked hydrophobic character. Thiophosphoric (equatorial 
S atom) derivatives have a decreased affinity for all four receptors.83 Protonated (at pH 6) aliphatic chain  
ω-NH2 groups (2 and 8 substituents) reduce affinity.85 Differences between the receptor maps for the four 
sites could be used to attempt synthesis of cAMP derivatives with specific binding against one of these sites. 

CARCINOGENESIS AND ANTICANCER AGENTS 

For polycyclic aromatic hydrocarbon derivatives with mutagenic/carcinogenic activity based upon diol 
derivatives, cation stabilization energy is a usefull parameter. For a series of derivatives of benzopiren, 
benzantracene, colantrene and methylated derivatives we tried to correlate  carcinogenicity with the cation 
delocalization energy, DE (ω-HMO method), MTD and average topologic distance connectivity, j. For the 
very active compounds, Y = 1.5 was considered as the quotient of animals with tumors per total number of 
animals for moderately active compounds and Y = -0.5 for inactive compounds. The correlation with DE is 
already significant and is markedly increased by adding MTD as a second parameter, but only moderately by 
adding j as the third. Out of a total N = 53 PAH – derivatives, 41 were correctly classified into the 3 activity 
classes and there were no false prediction between the 2 extreme classes (very active and inactive).87 

QSAR’s with MSD and MTD were attempted for cis dichlorodiamine platinum(II) compounds with 
various ammine ligands, which act by cross-alkylating nitrogen bases within DNA.88 Toxicity in mice and 
therapeutic index against the ADJ/PC6 tumor were used as biologic activities. A decrease of toxicity with 
increase of hydrophobicity π was observed (N= 17, r2 = 0.79), but, for the therapeutic index there is no such 
correlation (r2 = 0.16). Addition of MSD or MTD to the correlation with the therapeutic index produces an  
r2 ≈ 0.50. In a more recent study,89 for N = 24 complexes with aliphatic monoamines, toxicity correlates well 
with π and π2 (r2 = 0.79) and an optimal hydrophobicity of π = 2.5 is indicated. Addition of MTD yields r2 ≈ 0.75 
and the detrimental vertices of the receptor map indicate steric hindrance effects in the attack upon DNA. For 
a more complete series of N = 45 complexes including bidentate ligands and a more complete series of  N = 45 
complexes including bidentate ligands and a more complete series of leaving groups (Cl-, Br-, I-, C2O4

2-, etc.) 
an attempt to factorise toxicity and therapeutic index on amine and leaving group failed, but the dependence 
of toxicity upon π is, at least qualitatively, the same.89 A theoretical study, at the EHT-level for this type of 
complexes was also performed.90 Correlation of antitumor activity with MSD was also attempted for a series 
of Cu(II)-aminoacid complexes.91 

QSAR’s by MTD were performed also for reversal of keratinisation of hamster tracheal organ culture, 
for a series of N = 53 retinoids including all trans and 13-cis retinoic acid esters, amides, various ring and 
side chain modified analogs.92 A hypermolecule with M = 63 vertices results. The optimized receptor map 
was obtained with the single connex graph restraint for cavity and common core vertices. The correlational 
result is r2 = 0.73, while for a test series of N = 15 other retinoids, 2

CVr 0.84=  is obtained. A revised version 
of this MTD, for a more extended series of retinoids was also published.93 

BIOLOGICALY ACTIVE STEROIDS 

A series of N = 46 cardenolipides and bufadienolides-toxicity with respect to cats as biological activity, 
yields good correlation with MTD (single connected graph condition for cavity and common vertices 
respected) – r2 = 0.72 is obtained.27 Inclusion of hydrophobicity produces only a moderate increase, to r2 = 
0.84. For crossvalidational tests, see previous chap. 3. In another series of N = 20 digitoxigenin, digoxigenin 
derivatives with small substituents, the correlational result is:94 

 7Ŷ 7.383 0.753MTD 0.923= − − δ ;           r2 = 0.84 (28) 

with δ7 for strong inhibitory effects of C15-substituents. Inhibition of Na+/K+-ATPase was considered in94. 
Order of experimental activities for some common compounds differ in94 and27, as well as the optimized 
receptor maps. 
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For gestagenic steroids, good results where obtained with MTD asd hydrophobicity, π. For a series of 
N = 34 progesterone derivatives r2 = 0.93 is obtained (r2 = 0.49 with π only)25, for a series of N = 25 testosterone 
derivatives r2 = 0.92 is obtained.86 In a MTD-QSAR for a series of N = 55 progesterone, 4,9 estradien-3-one 
and 5αH-androstane-3one derivatives, with MTD and π, r2 = 0.87 is obtained;27 for a test series of 5 different 
steroids, the calculated vs experimental activity correlation yields 2

CVr 0.50= . 
QSAR’s were established also for estrogenic steroids. For a series of N = 22 estradiol and stilbestrol 

derivatives, r2 = 0.95 was obtained98, but for a very large number (M = 50) of vertices, with MTD and π. For 
a series N = 30 estrogenic derivatives, with Se and I atoms in substituents, r2 = 0.85 was obtained, with MTD 
and two indicators variables (for the presence of the key 3 and 17β oxygen atoms).99 

For a series of N = 46 aromatase inhibiting steroids, r2 = 0.83 was obtained with MTD, π and the 
resonance energy, R, for a system of conjugated electrons in the region of the A and B rings.100 

QSAR’s with MTD were performed also a series of N = 21 steroids, vs. affinity to Corticosteroid 
Binding Protein and Testosterone Binding Proteins.101 The results were r2 = 0.93 and r2 = 0.85, but for a test 
series of 10 different steroids, the CoMFA-QSAR102 gives better prediction than this MTD-QSAR. 

MTD WITH ORTHOGONALIZATION OF PARTNER DESCRIPTORS 

Within the MTD-method, variation of the MTD descriptor values and other, partner, descriptor value 
can be performed with orthogonalization of the descriptors such that MTD retains mainly information not 
contained in the partner descriptors. This method was applied to a series of N = 49 psychotomimetic 
phenylalkylamine derivatives.103 As partner electronic descriptors, the energy of the lowest unoccupied 
orbital was used, together with the net charges on the phenyl ring atoms (AM1 calculations). Other 
descriptors used within various models were hydrophobicity and lipophilicity descriptors and Hall and Kier 
electrotopological state descriptors. The descriptors used were scaled to unit and orthogonalized by a method 
of Randić. The resulted hypermolecule has M = 20 vertices. As statistical results r2 = 0.885 and q2 = 0.793 
were obtained. The Randić orthogonalization identifies MTD as a dominat descriptor which was separated 
from the information related to other descriptors.103 

The MTD method was used also in connection with hydrophobicity upon a series of N = 20 polychlorinated 
biphenyl derivatives and N = 12 polychlorinated benzene derivatives, for which reliable experimental data 
are available.104 When MTD is used in association with descriptors related to topological 2D and 3D 
properties, most tested descriptors correlate strongly with the number of chlorine atoms. For the polychlorinated 
biphenyl derivatives (M = 10 vertices) logarithms of water: octanole partition coefficients yield, in correlation 
with the number of chlorine atoms yields r2 = 0.931, while correlation with MTD yields r2 = 0.948 – with 
supplementary information for proximity effects, 

Several other QSAR’s with MTD were also performed for series of amphetamine type derivatives and 
other small aromatic molecules with biologic activity as well as conformational analysis and calculations of 
thermodynamic properties, by quantum chemistry methods, for representative molecules.105-107 

QUANTITATIVE STRUCTURE-ACTIVITY/PROPERTY RELATIONSHIPS APPLIED TO DYE 
LIPOPHILICITY, BIODEGRADABILITY AND AFFINITY FOR FIBRE, POLYMER TECHNICAL 

PROPERTIES AND CHROMATOGRAPHIC MOBILITIES 

Dyeing can be seen as an apparently simple process which is actually rather difficult to explain. There 
appears to be a decrease in entropy (an increase in the order of the dye molecules). The explanation for this 
lies probably in the complexity of the whole system (including the complex structure of water itself). 
However, the fact that such phase transfers involving the adsorption of large ions or molecules from one 
phase to another occur is rather fortunate in other fields. 

Molecular modeling and statistical methods used in the QSAR (Quantitative Structure-Activity 
Relationships) field constitute important new tools for the study of dye-fibre interactions. The advantages of 
this new approach to dye adsorption on cellulose fibre are related either to the description of the mechanisms 
present at the molecular level or to the predictability of the proposed models, which can lead to the design of 
new dyes with higher affinities for the cellulose fibre.  
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Classical QSAR, pattern recognition and 3D-QSAR methods have been employed by us in the study of 
dye fibre interactions.66, 67, 111-130 Several classes of dyes were used in the study of the application of QSAR 
techniques to cellulose dyeing. Multiple linear regression (MLR) and principal component regression 
(PCRA) methods applied to a series of anthraquinone vat dyes lead to the conclusion that among the most 
important parameters in this dye series are the length of the conjugated chain of the dye molecule and the 
number of proton donor groups.114-116 Minimum steric difference (MTD) results obtained for planar114,115,118 
and multiconformational117 constructions showed a similar conclusion, that along the longest dye molecule 
axis mainly attractive interactions are present; only in lateral pockets were some detrimental vertices found. 
The comparative molecular field analysis (CoMFA) study leads to the conclusion that the electrostatic 
interaction is the main factor contributing to the dye-fibre interactions.117 The electrostatic field contributions 
show that, if vast domains exhibit increasing positive charges, i.e., in the regions of almost all substituents of 
the anthraquinone moiety, this should yield higher affinities for cellulose. This fact suggests some kind of 
electrostatic “attraction” between the dye molecule and the negatively charged cellulose fibre. This is in 
accordance with the results of the MTD method, showing attractive regions for many vertices of the 
substituents belonging to the anthraquinone skeleton. It is interesting however that the analysis of the 
CoMFA steric field contributions leads to the conclusion that the beta substitution to the anthracene moiety 
will reduce dye affinity, in contradiction to the MTD results, which indicate this region as beneficial for binding.  

Series of anionic monoazo dyes were studied by 2D-QSAR methods.119 Dye lipophilicity, expressed by 
the chromatographic RM values, has been found to have contribution to dye affinity for compounds with one, 
respectively two sulphonic acid groups in the coupling component, as derived from MLR models. Electronic 
effects (expressed by frontier orbital energies) are also important in dye adsorption. MTD results119 indicated 
as favorable region of dye binding the molecular dye axis and the inclusion of additional condensed aromatic 
nuclei. The presence of sulphonic acid groups in the dye molecule was detrimental for dye adsorption on 
cellulose, which contributed only to dye solubilization. Steric effects were found to be important in dye-cellulose 
interactions for this series of compounds. CoMFA results were obtained for electronic dye structures 
characterized by gas/solution-phase chemical descriptors.120,121 In both cases local positive charges and 
increased dye donor ability favored the dye adsorption on negatively charged cellulose. In the first case 
predominance of electrostatic interactions in cellulose dyeing was observed, and hydrogen bonds as crucial 
feature in the dye-fibre interactions, which may also be involved in intermolecular dye-dye aggregation, in 
the second case. Specific binding affinity in terms of pharmacophoric constraints, even less specific than 
ligand-biological receptor interactions, was also discussed. 

A MTD study was performed for a series of heterocyclic monoazo dyes.122 Dye binding was observed 
in regions along the dye molecular axis. Additional condensed aromatic nuclei in the heterocyclic dye moiety 
favored the dye affinity for cellulose, in opposition to sulphonic groups contained in the dye molecules.  

MTD calculations were applied to another series of heterocyclic azo dyes123 and dye binding to 
cellulose fibre was observed in regions along the dye molecular axis. Sulphonic groups attached to the dye 
molecules caused steric repulsions with the fibre. A deeper insight in dye-cellulose interactions was obtained 
by CoMFA.124 The CoMFA results indicated that electrostatic field contributions, dominant, bulky groups 
attached to the naphthyl moiety and predominance of positive over the negative charges to be important for 
dye adsorption. The contribution of dye molecule solvation in cellulose dyeing was considered by the 
contribution of the LUMO molecular orbital energy.  

For a series of bisazo anionic dyes MLR and NN studies were performed using a set of steric, 
electronic and hydrophobic parameters derived from three-dimensional dye structures.67 Important steric and 
electrostatic effects were found in dye binding, also dye adsorption to be favored along the longest dye 
molecular axis and by the shape of dye molecules. The dye donor ability of dye molecules in dye-fibre 
interactions was found to be important for dye-cellulose binding too. The NN calculations emphasized strong 
nonlinear dependence of dye descriptors with their affinity for cellulose.  CoMFA results125 emphasized the 
dominant electrostatic field contribution in dye-fibre interactions and the molecular dye planarity and 
inclusion of the J-acid in the coupling component as favorable for dye affinity. 

The affinity for cellulose fibre of a series of disperse dyes was first studied by means of the Free-Wilson 
and the MLR methods.126 Electronic effects were found to be significant in dye binding to fibre. Dominant 
steric effects for dye affinity could be explained by the importance of dye linearity and coplanarity which 
favor dye adsorption, as well as the increasing dye molecular length. MTD results indicated the beneficial 
region of binding along the longest molecular axis and addition of heterocyclic condensed substituents 
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favorable for dye binding. CoMFA analysis applied to the same series of dyes127 yielded the conclusion of 
steric field contributions dominant over the electrostatic ones for dye adsorption and increased heterocyclic area 
in dye molecules favorable for dye affinity. This was in contradiction to the results obtained for anthraquinone 
vat dyes and for monoazo and bisazo dyes. Positive electrostatic contribution around the benzene ring bonded 
to the azo group are favorable for dye binding. The pharmacophoric concept hypothesis which states that 
micro-crystalline states from the cellulose fibres create a binding site similar to the enzymatic binding site, 
which recognizes molecular patterns of dye molecules was questioned for this series of dyes. 

Taking into account the above presented QSAR-type results applied to dye adsorption on cellulose, an 
appreciable similarity of dye-fibre interactions with receptor-ligand interactions was concluded. Structural 
dye features favorable for binding to cellulose obtained by QSAR-type calculations were reviewed in a few 
articles.66,128-130 

Quantitative Structure-Property Relationships (QSPR) have been applied to study technical polymer 
properties by our group. Principal component analysis (PCA), molecular modeling and multiple linear 
regression (MLR) were applied to model the glass transition temperature of some polyphosphonates 
(phosphates) which are important because of their excellent mechanical, electrical and flame resistance 
properties and also because of their analogy with the nucleic acids.131-133 A step-by-step build-up approach 
(e.g., generation of structures by joining together smaller fragments in known low energy structures) and 
molecular modeling calculations were used to study the possible conformations of PhOP(O)(Me)OPh(Me)2Ph.132 
The conformations of low, comparable energy levels were employed to construct the most stable dimer and 
tetramer of the polymer. Starting from structures of low energy monomer conformations structural parameters of 
several polyphosphates and polyphosphonates were calculated and further used in correlations with the polymer 
glass transition temperatures.133 Structural polymer features important for the glass transition temperature were 
analyzed qualitatively (by principal component analysis) and quantitatively (by multiple linear regression). 
Structural polymer features important for the glass transition temperature were emphasized. 

Kaliszan134 considers that same kind of basic intermolecular interactions determine the behaviour of 
chemical compounds both in biological and chromatographic fields. Quantitative Structure-Retention 
Relationships (QSRR) were applied by us to chromatographic mobilities of several series of compounds.135-142 
Thus, enantioselectivity of oxirane ring-opening catalyzed by epoxide hydrolases was studied by multiple 
linear regression and by artificial neural networks (ANN).135 Steric and/or electronic requirements for the 
enantioselectivity in substrate binding were found from the influence of structural parameters of epoxides on 
enantioselectivity.  

Quantitative structure-retention (QSRR), as well as enantioselective retention relationships (QSERR) 
were derived by multiple linear regression analysis, artificial neuronal network and CoMFA calculations for 
a series of chiral arylalkylcarbinols on four brush-type chiral stationary phases.136,137 Electronic structural 
properties and – less important – the distance from the chiral carbon atom to the last non-hydrogen atom of 
the alkylcarbinol moiety were found to be important for the chromatographic capacity factors. For the 
enantioselectivity in QSERR models bulk (or steric) as well as polar or electrostatic properties of analytes 
were important. This finding was in line with the CoMFA results where steric and electrostatic fields were 
found to contribute almost equally with a slight dominance of the electrostatic interactions. 

QSRR calculations were also applied to model the chromatographic mobilities of some 4,4’-
diaminobenzanilide-based direct dyes.138-140 Traditional and rational QSAR/QSPR modelling techniques 
have been applied to find a quantitative structure-retention relationship: molecular modelling, multiple linear 
regression and principal component analysis. Influence of structural dye parameters indicated the importance 
of dye hydrophobicity, dye molecular dimension and structural complexity on their lipophilicity. 

Chromatographic mobilities of a series of arylamides of ortho-hydroxyarylcarboxylic acid was studied 
by QSRR.141,142 Molecular modeling, principal component analysis (PCA), principal component regression 
analysis (PCRA) and multiple linear regression (MLR) were applied to study the influence of structural 
descriptors on the chromatographic mobilities. It was found that arylamide lipophilicity depended on polarity 
and bulk terms. 

A hydrophobicity, protolytic equilibrium and chromatographic behaviour study of some monoazoic 
dyes143 was performed by statistical analysis. The neutral, amphionic and ionic dye forms were studied in 
assessing chromatographic mobilities for lipophilicity characterizations and the importance in partition 
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processes of ionic and amphionic dye forms. Correlations between experimental chromatographic mobilities 
and calculated octanol-water partition coefficients indicated that not only neutral but also amphionic, 
possibly also ionic forms brought a substantial contribution to polar–lipophilic partition processes. 

QSAR methods are also employed for the prediction of acute toxicity of chemical compounds when 
experimental data are few or do not exist. Textile dyes have to be removed before slooping in rivers because 
they are easily recognized in wastewaters. Such compounds can reach the aquatic environment as dissolved 
or suspended dyestuff because the usual conventional treatments employed in the textile and synthesis dye 
factories do not remove efficiently most dyes. Aerobic biodegradability of some sulphonated azo dyes was 
studied by principal component analysis and the discriminant technique of two-value regression analysis.144 
The derived results emphasized the interaction between ring substituents for dye biodegradability. A 
statistically significant and biologically meaningful regression model that gives perfect classification was 
obtained, and the results were compared with the previous qualitative interpretation of the substituent effects 
on biodegradation. 

CONCLUSIONS 

The main interest in the QSAR-group of Timişoara was the inclusion of molecular stereochemistry in 
QSAR. The MSD and the MTD methods are the most often quoted results of this group but other items, such 
as molecular shape descriptors based upon the molecular van der Waals space and new topologic indices also 
contributed to inclusion of stereochemistry in QSAR. 

The MTD method is a recognized as a precursor of modern 3D-QSAR. Most QSAR-books written in 
the eighties quote MTD. The molecular superposition procedure, successfully used by MTD, is used also by 
CoMFA – the finally adopted as standard – method. Instead of the hypermolecule of MTD, based on the 
superposed molecules, CoMFA uses another network, the vertices of which could correspond to the 
approximate position of receptor atoms. The MTD-method was among the first QSAR-methods to use, on a 
large scale, test series of molecular in order to have a, at least somewhat realistic, idea on the predictive 
power of results. The inability of our group to create a user’s friendly program for hypermolecule 
construction limited the use of MTD by other groups. 

Several QSAR applications of MTD and molecular shape descriptors were realized by the QSAR group 
of Timişoara and in collaboration with other groups interested in QSAR. The most quoted applicational line 
is the one related to the affinity of dyes to cellulose fibers – considering the textile fiber analogous to 
biologic receptors; not only MTD but also several modern methods, such as CoMFA or neural networks 
were used hereby. In last years, studies based on modern drug design techniques, concerning receptor-ligand 
interactions and studies based on search techniques in large data bases, have also been developed. 
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