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In this work, based on simple algebraic manipulations, the divergence-free description of molecular rotations is 
revisited using the axis-rotation formula for the rigid-body system. The so-called axis-rotation formula is useful in 
various fields of computational chemistry, including molecular simulations, graphical rendering and group theory, 
allowing more convenient ways to construct and to manipulate the atomic or fragment structures of rotations. It is 
shown that the analytical expression of the axis-rotation operator facilitates obtaining the symmetry operator in 
analytical form, which is useful in the determination of group symmetries of molecules and the adaptation to the 
symmetry of atomic and molecular orbitals. 

INTRODUCTION∗ 

In order to describe the orientation and the 
rotation of a rigid body in space, two mathematical 
approaches are frequently used, based on Euler 
angles1 or quaternions.2-4 The method of Euler 
angles consists of three successive rotations around 
the x-, y- and z-axes with three angles φ, θ and ψ, 
known as the Euler angles. Different sets of Euler 
rotations exist depending on the succesion of the 
three rotations. Quaternions, which obey the 
Pawley algebra5, are mathematical objects that 
generalize the complex numbers. Formally, the 
quaternion T

0 v=(q , )q q is a vector with four 
components, i.e. one scalar component, 0q , and a 

vector T
v 1 2 3=(q ,q ,q )q . The quaternion of the 

form Tˆ=(cos( /2), sin( /2))ϕ ϕq n is normalized 
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2 2 2 2
0 1 2 3q +q +q +q 1= , in which it is associated to the 

rotation of the angle ϕ around an arbitrary axis 
T

1 2 3ˆ =(n ,n ,n )n .3 The components of the 
quaternions are expressed as the products of sine 
and cosine functions of the Euler angles. Therefore 
Euler angles and quaternions can mutually be 
transformed into each other.4  

Deriving the equations of motion it turns out 
that the time derivatives of the Euler angles are 
expressed through the angular frequencies around 
the principal axis of the molecule via a matrix, 
which is singular for the orientations ϕ=0 and ϕ=π 
This problem may be overcome either by 
successive rotations of smaller angles or by 
changing the coordinate system.6 Both solutions 
require additional statements in the algorithm and 
introduce a computational overhead. The 
advantage of the quaternion description is that 
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there are no special cases for the orientation of a 
molecule, i.e. it is divergence free. Frequently a 
computational problem is associated with 
quaternion algorithms, i.e. the norm of the 
quaternions is not conserved along the evolution in 
time.7-9 The accumulation of the numerical errors is 
usually prevented by a renormalization of the 
quaternions at each time step. Only recently, 
Martyna and co-workers10  proposed a symplectic 
method which conserves the norm of the 
quaternions in time. The method of Euler angles 
provides a physical description of the rigid body 
rotation. On the other hand, the quaternion 
formalism completely describes the rotation, but 
the quaternions are complex mathematical objects 
which do not directly reflect a physical picture of a 
rotation.  

A third possible way to describe the rotation of 
a rigid body around an axis is the so-called axis-
rotation or Rodrigue’s formula.1,11-15 For unknown 
reason, it is not popular in the field of molecular 
simulations, and to our best knowledge it is 
mentioned only in two works.14,15 The axis-rotation 
formula can be derived from the quaternion 
formalism, and it can be directly obtained through 
the decomposition of the vector position in the 
perpendicular and the parallel components to the 
rotation axis. The axis-rotation formula provides a 
clear picture of the rotation in space. In the present 
article, based on simple algebraic manipulations, 
we will revisit the derivation of the axis-rotation 
formula and give some applications in molecular 
simulations, graphical rendering, and group theory. 
It is shown to allow a simple geometrical 
manipulation of molecules or molecular fragments, 
which is a possible facility for the preparation of 
the coordinates of molecular systems in areas like 
quantum chemistry calculations, molecular 
dynamics or Monte Carlo simulations. The 
rotational dynamics of a rigid body can be 
recovered and analysed from the trajectories of 
particles or fragments. Furthermore, the axis-
rotation formula is useful to construct the 
symmetry operator in group theory.  

ROTATION OF A POINT  
AROUND AN AXIS 

Consider the changes of the coordinates of a 
point after the rotation with the angle ϕ around an 
arbitrary axis, denoted by the unit vector n̂ , that is 
going through the point O represented by the 

vector 0s  with respect to the origin of a given 
reference frame. Two points, a bond or a direction 
(for example, the electric dipole, the principal 
inertia axis or the angular velocity) may define the 
rotation axis. The direction of rotation is given by 
the right-hand convention. 

The vectors = +0s s r and ' = '+0s s r  give the 
position of a point P before and after the rotation, 
respectively (see Fig. 1). A simple formula that 
relates r  to 'r  (the relative position vectors to 0s  
before and after rotations, respectively) is given by 

 ˆ ˆ ˆ'= cos ( )(1 cos ) sinϕ ϕ ϕ+ ⋅ − + ×r r n n r n r . (1) 

(A derivation of the formula is shown in Appendix 
A1). The transformation of the position vector 
relative to O is given by ˆ' ϕ

nr = rR , where 

ˆ ˆ ˆ ˆ= cos (1 cos ) ( ) sinϕ ϕ ϕ ϕ+ − ⋅ + ×n n n nR I I I , (2) 

which  is the associated axis-rotation operator and 
I represents the identity operator. Applying the 
axis-rotation operator, the absolute position of the 
point P after rotation is expressed by  

 ˆ' = ( - )ϕ+0 n 0s s s sR . (3) 
 

 
Fig. 1 – The definition of the absolute (s) and of the relative 
(r) position vectors, before and after the rotation of the point P 
to P´ by the angle ϕ around the unit axis n̂  which is going 
through the reference point O described by s0. The vectors 
  { }

1,3î i=
f  are the unit vectors of the absolute reference frame. 

 
Furthermore, the velocity of a point P is given 

by 

 = +0s s r , (4) 
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where 

 ˆ= =ω × ×r n r rω  (5) 

     The above equation describes the rotation 
around the axis ˆ = /ωn ω  with the angular 
velocityω  (see Appendix A2). Since the 
description of positions, Eq. (3), and velocities, Eq. 
(4), can be performed relative to an arbitrary 
origin, it is convenient to introduce a local 
reference frame for the arbitrary point O. In the 
case of a set of atoms, the centre of mass system is 
a natural choice for the reference point O. The axes 
of the local reference frame can be chosen parallel 
to the axes of the absolute reference frame (i.e. not 
necessarily the principal inertia axes). With this 
choice of reference frame the translational motion 
is subtracted and consequently only the rotational 
part is considered here.  

The rotation operator ˆ
ϕ
nR  obeys the following 

relations associated with the rotation axes n̂ : 
i)  ˆ ˆ ˆ ˆ ˆ

α β α β β α+= =n n n n nR R R R R  

ii) 0
ˆ ˆ ˆ ˆ ˆ
ϕ ϕ ϕ ϕ− = = =n n n -n nR R R R R I  and 

1
ˆ ˆ ˆ)ϕ ϕ ϕ− −= =n n -n(R R R  

iii) ˆ ˆ ˆ= 2 ( )π − + ⋅n n nR I I  

iv) ˆ ˆ( ) ( )=ϕ ϕ⋅ ⋅n na b a bR R and 

 ˆ ˆ ˆ( )×( )= ( × )ϕ ϕ ϕ
n n na b a bR R R  

v) n̂ can be the eigenvector of the rotational 
operator ˆ ˆ ˆ=ϕ

n n nR for the eigenvalue 1.  
The algorithm of the rotation of an atom using 

the axis-rotation formula may be optimized so that 
it requires only 30 numerical operations (additions 
and multiplications), while the quaternion formalism 
requires at least 41 numerical operations. In the 
case of molecules or fragments of systems 
consisting of N atoms, the axis-rotation formula 
requires (26N+7) numerical operations, compared 
to 41N numerical operations required by the 
quaternion formalism. The most economical way is 
to construct the rotation matrix (see, Eq. A3.2 in 
Appendix A3),  
 

 

  
1 1 1 2 3 1 3 2

1 2 3 2 2 2 3 1

1 3 2 2 3 1 3 3

n n (1-cos )+cos n n (1-cos )-n sin n n (1-cos )+n sin
n n (1-cos )+n sin n n (1-cos )+cos n n (1-cos )-n sin
n n (1-cos )-n sin n n (1-cos )+n sin n n (1-cos )+cos

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ ϕ ϕ

 
 =  
  

R ,             (6) 

and, using this matrix, only (15N+22) numerical 
operations are required for the computation of 
rotation (see Appendix A4). 

APPLICATIONS TO ORIENTATION  
AND SYMMETRY 

1. Transformation between Cartesian  
and internal coordinates 

The atomic and molecular positions in space 
can be described either by the Cartesian 
coordinates (CC) or by the internal coordinates 
(IC) representations of relative positions. 
Depending on the size and the topology of the 
system, the localization of the stationary points on 
the potential energy surface are largely affected by 
the coordinate system itself. The IC can be an 
efficient way for such cases. Changes of atomic 
positions in the CC are highly correlated in 
structural topologies, and, as a consequence, a 
larger number of iterations is required to find local 
minima. The harmonic and anharmonic couplings 

between ICs are important in cases of large 
systems with strong connectivity, increasing the 
number of optimization iterations, imposing 
difficulties for the convergence. The coordinates 
can be decoupled into linear combinations of 
distances, and bond and dihedral angles as in the 
natural,16 the redundant17 or delocalized18 internal 
coordinates. Providing a good initial Hessian, 
especially when the initial geometry of the system 
is far from equilibrium, the optimization in CC is 
enforced, making the convergence in the CC 
comparable to the convergence in IC. The CC 
system allows the freezing of atoms in space or 
along some Cartesian directions eliminating the 
respective coordinates from the set of variables. 
Similarly, the IC representation facilitates directly 
the imposing of constraints for bonds and angles.   

Because in the empirical force field methods 
the calculation of the energy and the gradients are 
not expensive, the number of cycles to converge to 
equilibrium is not an important criterion in 
choosing the optimization method. Usually, the 
optimization is done in the CC. In contrast, in 
quantum methods, the energy and its derivatives 



798 Viorel Chihaia et al. 

are expensive to calculate and the optimization 
method has to be carefully chosen to reduce the 
number of optimization cycles. In most cases, the 
energy and its derivatives are analytically 
expressed in CCs. On the other hand, 
displacements toward a local minimum are 
performed in ICs and consequently mutual 
coordinate transformations are required between 
the two descriptions.  

The conversion of CCs to ICs can be computed 
straightforwardly. Suppose e.g. a set of four 
connected atoms I, J, K and L. The internal 
coordinates corresponding to the atom L are the 
distance between the atoms K and L, the bond 
angle JKLα and the dihedral angle IJKLβ , 
respectively. Let us define two vectors 

ˆ ˆˆ
ˆ ˆ

JI JK

JI JK

×
×

r ru =
r r

 and 
ˆ ˆˆ
ˆ ˆ

KJ KL

KJ KL

×
×

r rv =
r r

, which are the 

unit vectors defining the normal to the plane (I,J,K) 
and (J,K,L), respectively, where the vector 
ˆ / ( ) /XY XY XY X Y X Y= − −r = r r s s s s  is the unit 

vector along the X-Y bond. The intra-atomic 
distance is calculated directly as 

KL KL L Kd = = −r r r , where KLr  is the relative 

vector from atom K to atom L. The oriented bond 
angle JKLα  is measured from ˆKJr to ˆKLr , around 

v̂ .∗ The oriented dihedral angle IJKLβ  is measured 

from û  to v̂ , around JKr . A special case arises 
when the atoms I, J and K (or J, K and L) are 
collinear: the vector û  (or v̂ ) can be any 
perpendicular unit vector to ˆKLr . For consistency it 
is chosen as in the previous iteration of 
optimisation. If this situation appears in the first 
optimization cycle, then the other set of atoms and 
angles is selected.   

The inverse transformation from the IC to the 
CC system requires additional effort. For a set of 

                                                 
∗ An angle θ formed by two unit vectors â  and b̂ , 

measured from â  to b̂  around the unit vector n̂ , takes values 
between 0 and 2π . Its measure is determined based on the 

signs of ˆˆcosθ = ⋅a b and ˆˆ ˆsin (θ = ⋅ ×n a b) . If the angle is 

measured from b̂  to â  or â  to b̂ , but round ˆ-n ) it will have 
the negative value -θ, (therefore it takes values between -2π  
and 0) or 2π-θ  because its periodicity (see the comments 
from Appendix A1). 

four atoms I, J, K and L, where the CCs of the 
atoms I-J are already settled, the position of the 
atom L is established based on the length dLK and 
the angles αJKL and βIJKL. The usual procedure for 
this conversion employs three rotations around the 
three axes of the coordinates associated with the 
set. Here we present a procedure that requires only 
two rotations, and, moreover, an analytical 
formula, which relates the CCs to the ICs, is 
determined. The relation is useful for the 
determination of the inverse of the Wilson B 
matrix, which relates the displacements in ICs and 
CCs. For many atoms and a large number of 
conversions from internal to Cartesian coordinates, 
this procedure reduces the computational effort 
significantly (and therefore also round off errors 
are reduced). We will use the vectors ˆKJr and û , 
defined above. Let us consider the point X along 
the axis ˆKJr from K to J, at the distance dKL from 

the atom K: ˆKX KJ KLd= ⋅r r . Now the point X is 

rotated to the point Y with the angle JKLα  around 

the axis û : ˆ
JKL

KY KX
α= ur rR . The point Y, 

contained in the plane (I,J,K), is rotated around the 
axis ˆ ˆJK KJr = -r  with the angle IJKLβ  (or around 

the axis ˆKJr  with the angle IJKLβ− ) to the final 
position of the atom L, situated in the plane 
(J,K,L): ˆ 

IJKL

JKKL KY
β= rr rR . The absolute position of 

the atom L is L K KL=s s + r , where 

[ (ˆ ˆˆcos sin cos= + × −r r u rKL KL KJ JKL JKL KJ IJKLd α α β  

)ˆ– sinu IJKLβ  (7) 

is obtained by combining the axis-rotation formula 
for the two rotations and using properties iv) and 
v) of the axis-rotation operator.  

The unit vector û  is not determined when the 
atoms I, J and K are collinears; it is settled from 
the previous iteration. Thus, the procedure is free 
of singularities and as the angles may have any 
values in , a standard procedure for optimization 
may be applied. 

2. Orientation of a system 

The orientation of a system is described by any set 
of three orthogonal unit vectors, that for a right-
hand set rotate solidary with the system. The 
position vectors of three atoms of the system are 
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enough to build such unit vectors: a first vector is 
chosen along the line that connects two atoms, a 
second one is considered perpendicular to this one 
lying in the plane of the three atoms and a third 
vector is perpendicular to the plane spanned by the 
first two vectors. However, the principal inertia 
axes { }

1,3î i=
f  relative to the system’s center-of-

mass form the most convenient set. It characterizes 
the spatial arrangement of the constituent atoms in 
the local reference frame with the origin in O. Let 
us suppose that the eigenvalues and associated 
eigenvectors are ordered as 1 2 3I I I≤ ≤ . In the 
case of a linear molecule, 1 0I = and 2 3I I=  and 

consequently one principal axis 1̂f  is oriented 

along the molecule and the other two principal 
axes can be any orthogonal vectors that are 
perpendicular to the molecule. If I1 << I2 ≤ I3, then 

1I  is a measure of the deviation of the atoms from a 

linear molecule and the principal inertia axis 1̂f  is 
close to the molecule axis. When the atoms are 
arranged in a plane, the principal moments of inertia 
satisfy the relation 3 1 2I I I= + . The deviation from 
this relation characterizes the deviation from the 
average plane of the atoms. In this case the principal 
axis 3̂f is identical to the normal vector of the plane 
spanned by the atoms while the other two principal 
axes lie within this plane. 

 

 
Fig. 2 – The body reference frames of a rigid-body before (left) and after his rotation 

(right). The vectors { }
1,3

ˆ
=

fi i
and n̂ are the principal inertia axes of the rigid- 

                                              body before and after rotation. 
 

When a molecule is rotated in space with angle 
ϕ around an axis n̂ , which is going through the 
reference point O, the inertia matrix is changed as 

T=I' RIR , where R is the corresponding rotation 
matrix given in Eq. (6). The new principal axes 

{ }
1,3

ˆ
i i=

f'  can be determined calculating I'and 

solving the eigenvalues and eigenvectors equation. 
It is easier to determine the new principal axes 
directly by the rotation of the initial principal axes 

{ }
1,3î i=

f : ˆ
ˆ ˆ

i i
ϕ= nf' fR . (see, Fig. 2) When the system 

is subject of some successive rotations and we do 
not need the coordinates of the atoms after each 
rotation, the new values of the principal axes after 
each rotation are calculated, and from the relative 
orientation of the last principal axis and of the 
initial principal axis the total rotation matrix is 
determined, as it is indicated in Appendix A3. 
Finally, using the total rotation matrix the 
coordinates of the atoms can be established.  

3. Molecular motion from  
the trajectories of each atom 

Suppose that we intend to evaluate the 
rotational motion of a molecule from the 
trajectories of each atom from a molecular system. 
According to the theorem of Chasles,19 two 
configurations of a molecule may be described by 
a translational and a rotational transformation (note 
that this theorem was very recently proved with the 
help of quaternions20). Assume that the vectors of 
the basis set { }

1,3î i=
f are the principal inertia axes 

of a given molecule at the time step t0 and 

{ }
1,3

ˆ
i i=

f' are those of the same molecule at the next 

time step t0+∆t. The translational motion is easily 
computed from the trajectories of the centre-of-
mass position. The rotational motion can be 



800 Viorel Chihaia et al. 

determined by the projection of the basis set 

{ }
1,3

ˆ
i i=

f' over { }
1,3î i=

f . In the case of the flexible 

molecules, the vibrational motion contaminates the 
rotational motion determined in this way. 
Averaging the vibrational motion over a number of 
time steps, n, may eliminate this undesired effect. 
The rotational axes and the rotational angle, that 
correspond to the transformation of each molecule 
from one time step to the next step, are determined 
by the change of the principal axes between the 
two time steps as described in more detail in 
Appendix A3. 

4. Alignment of a system into a given direction 

E.g. in graphical visualization, crystal surface 
construction, or the initial structural setup of a 
molecular system, fragments or even the complete 
system has to be oriented often under an angle ϕ  
formed by a fixed direction in space described by 
the unit vector û  and a given direction from the 
system described by the unit vector v̂ , measured 
around a unit vector m̂ perpendicular to the plane 

( û , v̂ ) (see, Fig. 3). Two atoms, a bond, a dipole 
moment, the normal to a plane or a special 
direction from space may determine each direction. 
For example, this procedure can be applied to 
display a system with a special direction v̂  
perpendicular to the screen or when an adsorbed 
molecule must be oriented with the dipole moment 
to make the angle ϕ  with the normal of a surface. 
Moreover, some properties of the chemical system 
can be determined more efficiently by considering 
the system symmetry. Programmes that employ the 
symmetry of the molecule require the coordinates 
of the molecule to be given in the so-called 
standard symmetry orientation, which is defined 
based on the rules:  
(i) if the system has a symmetry Cs, then the z axis 
is chosen perpendicular to the symmetry plane,  
(ii) if the system has symmetry axes, then the z 
axis is oriented along the axis with the highest 
order, and (iii) the x axis is considered in one 
vertical plane if it exists or along an axis C2, if it 
exists. The procedure presented bellow can be 
applied to orient a given system in the standard 
symmetry orientation. 

 

 
Fig. 3 – A rigid-body in initial orientation and after its reorientation to 
form the angleϕ  between the directions û  (the given direction in 

                       space) and v̂  (the fixed on the body). 
 

The initial value of oriented-angle 0ϕ  is 
measured from û  to v̂ , around the unit 

vector
ˆ ˆˆ =
ˆ ˆ
×
×

u vn
u v

. The system is translated with the 

centre of mass in the reference point O and is 
rotated by an angle 0ϕ−  around the unit vector n̂  
to superpose the current direction v̂ over û . The 
desired orientation of the system is obtained by 
rotation of angle ϕ  around the unit vector m̂ . 
Finally, the system is translated back, with its 
mass-centre position in the initial position.  

5. Merging and joining of two structures 

Very often, two systems have to be arranged in 
a special relative orientation. An example is the 
adsorption of a molecule on an active site on a 
surface, which implies the geometrical matching 
between the parts of the molecule and the surface 
responsible for the frontier orbitals. A similar 
situation occurs in the case of drug interaction with 
receptor proteins. Such systems may be optimised 
as a supermolecule; however, due to the large 



 Molecular rotation in cartesian coordinates 801  

number of degrees of freedom, exploring all 
possible mutual orientations will result in 
expensive and long calculations. A significant 
reduction in computational operations can be 
achieved by investigating the alignment between 
the target molecule and the template, assuming in a 
first approximation the two systems as rigid-
bodies. The relative positioning of the two 
structures is determined by 6 parameters given by 
the relative position of their centres-of-mass and 
their relative orientation. In the case of different 
geometries of the two structures or fragments of 
them, the number of iterations may be reduced by 
superimposing the principal inertia axis of the two 
(sub)structures, using the axis-rotation formula. 
(See Appendix A3.)  

The design of new molecules or large systems 
requires the merging and/or joining of fragments or 
so called building blocks. This can be done using 
translations and rotations of the constituent parts. 
Let us suppose that the structures of two systems 
S1 and S2 are known and we intend to merge them 
into a new structure. The two structures are 
connected each other by at least a bond formed by 
two atoms, J from S1 and K from S2. Two other 
atoms, I from S1 and L from S2, connected to J and 
I, respectively, help us to define four internal 
coordinates: intra-atomic distance JKd , the bond 
angles IJKα  and JKLα , and the dihedral angle IJKLβ . 
In order to completely describe the relative 
arrangement of the two systems, two other internal 
coordinates are required. Such coordinates are two 
dihedral angles around the bonds I-J and K-L or 
two intra-atomic distances between other bonded 
atoms located in different systems.  

When Cartesian coordinates describe the two 
systems S1 and S2 or when the final system has to 
be visualized, it is preferable to work directly in 
Cartesian coordinates. To establish the distance 

JKd  between the atoms J and K, all the atoms of 

the system S2 are translated a distance JK JKd − r  

along ˆKJr . The new position of the atom K is 
ˆK J JK KJd= +s s r . The system S1 is rotated an 

angle 0
IJK IJKα α−  around the axis ˆ JI JK

JI JK

×
×

r ru =
r r

 

which goes through atom J and which is 
perpendicular to the plane spanned by the atoms  
(I, J, K). The 0

IJKα  is the angle formed by the 
atoms I, J and K before the rotation, measured 
around û . In order to settle the angle JKLα , the 

system S2 is rotated an angle 0
JKL JKLα α−  in the 

new position around the axis ˆ KL JK

KL JK

×
×

r rv =
r r

, 

which goes through K and which is perpendicular 
to the plane spanned by the atoms (J, K, L). The 

0
JKLα  is the value of the initial angle measured 

around v̂ . To fix the dihedral angle, the current 
angle 0

IJKLβ is determined and the system S2 is 

rotated by the angle 0
IJKL IJKLβ β−  around the axis 

ˆJKr . When the torsion angle IJKLβ  is not 
predetermined, the stable conformers are 
established by determining the torsion angle that 
corresponds to the local energy minimums: one 
fragment is rotated around the axis J-K by an 
incremental angle. The dependency of the total 
energy function on the torsion angle is recorded 
and the minima are detected. For higher accuracy, 
the internal geometries of the two fragments are 
optimised for each torsion angle IJKLβ .  

In the case of merging we have to identify the 
common domains of the two systems (skeleton, 
rings and bonds) and to superpose them excluding 
one of the two common domains. If they have no 
common domains, then we try with the enantiomer 
of one of them.      

The procedure presented above is considered 
for the superposition of I over L and J over K 
imposing the constraints IJKLβ π= , 

IJK JKLα α π+ = , and 0JKd = . With this 
constraints the systems have the freedom to rotate 
around the formed common bond I-J. If the 
systems have in common at least one more pair of 
common atoms X and Y, then the atoms are 
superposed including the internal coordinates 

0XYd = . If not, then the systems are rotated 
around the common axis I-J to identify the 
different possible isomers. 

6. Application to symmetry 

The symmetry of molecules, based on the 
concepts of group theory, allows us to select 
appropriate basis sets. Furthermore, the symmetry 
properties can be used to reduce the computational 
effort by block-diagonalization of the matrices that 
describe the interactions in a given system. The 
simple analytic formula of the axis-rotation 
operator makes it possible to build other symmetry 
operators for any orientations rather than the 
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standard symmetry orientation. The symmetry 
operators do not affect the molecular centre-of-
mass, and, in the case that a given molecule 
presents the inversion symmetry, the inversion 
point coincides with the molecular centre-of-mass. 
Without loss of generality, the reference point O, 

defining the rotation, may be chosen as the centre-
of-mass position in the axis rotation formula. 

The axis-rotation operator, corresponding to the 
symmetry axis n̂  and the quantized angle, 

2 /n nϕ = π , can be related with the rotation 

symmetry operator ˆ
n
nC  of degree n as  

 ˆ ˆ ˆ ˆ= cos (1 cos ) ( ) sinn
n n nϕ ϕ ϕ+ − ⋅ + ×n n n nC I I I . (8) 

     The reflection operator with respect to the 
symmetry plane is given by  

 ˆ ˆ ˆ2 ( )= − ⋅n n nI Iσ , (9) 

which represents the rotational operator with π 
radians around an axis n̂  included in the symmetry 
plane.  

The rotation-reflection operator is determined 
by the composition of the rotational operator with 
respect to the axis n̂  and the reflection operator 
with respect to a plane containing the mass-centre 
and the unit vector n̂  as normal, 

 ˆ ˆ ˆ ˆ= cos (1 cos ) ( ) sinn
n n nϕ ϕ ϕ− + ⋅ + ×n n n nS I I I . (10) 

The inversion operator, which transforms r  
into -r , with respect to a point O is  

 inv = −I I . (11) 

Numerous algorithms have been developed to 
determine the symmetry of a system.21 It is noted 
here that the operators in Eqs. (8) to (11) are 
helpful in detecting the symmetry elements 
effectively. Once the complete set of the symmetry 
elements for a given molecule is evaluated, then 
the sets of the equivalent atoms for each symmetry 
operator are identified. From these sets of 
equivalent atoms, a subset of atoms, the so-called 
unique atoms, can be determined. Using the 
coordinates of the unique atoms only, calculations 
are faster for the optimisation of molecular 
geometries. Different sets of functions (e.g. atomic 
orbitals, spin functions, molecular orbitals and 
vibration coordinates) can also be adapted to the 
symmetry of the system. In this situation, the 
matrix, which describes the electronic motion, the 
spin states, or the nuclear motion, will be block-
diagonalized, and the calculations are done 
independently in each block, which may 
significantly reduce the size and the complexity of 
computations.  

Applying the symmetry operators, say O  in 
Eqs. (8) to (11), to the functions of the basis set 
{ } 1,λ λ= ω
f , the elements of the matrix for the 

transformation of the function set { } 1,λ λ= ω
f  to 

{ } 1,
'κ κ = ω

f  becomes  

 
1 1

' Oκ λ κλ λ
λ λ

ω ω

= =

= =∑ ∑f f fO . (12)                     

This determines a representation Γ  for the 
group symmetry associated with the system. For 
the character of the symmetry operator in this 

representation, the equation of 
1

( ) Oλλ
λ

χ
ω

=

=∑OΓ  is 

calculated as the trace of the corresponding matrix 
O . The representation Γ  is reducible, and can be 

written as a direct summation, i.e. i i
i

a=∑Γ Γ , of 

the irreducible representation iΓ  of the symmetry 
group. The multiplicity of each irreducible 
representation is given by 

 *1 ( ) ( )
iia

h
χ χ= ∑

O
O OΓ Γ , (13) 

where the asterisk symbol denotes the complex 
conjugate of the character χ , and h is the number 
of the symmetry operators O , or the size of the 
point symmetry group.  

For each irreducible representation iΓ , an 
associated projection operator can be constructed 
as a combination of the symmetry operators O as 
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 *1 ( )i
ih

χ= ∑
O

P O O . (14) 

In this equation the coefficients are the complex 
conjugate characters of the operators in the 
irreducible representation. The symmetry-adapted 
functions corresponding to each irreducible 
representation can be built as a linear combination 
of the initial functions, over which the projection 
operator iP  is applied.22  

CONCLUSION 

In this work we have revisited the divergence-
free description of molecular rotations using the 
axis-rotation formula for the rigid-body system. 
This formula, based on simple algebraic 
manipulations, can be applied in any coordinate 
system where rotations are involved without 
determining the Euler angles. The axis-rotation 
formula is also an alternative way to avoid 
mathematical complexities in the quaternion 
formalism. It can be useful in different fields of 
computational chemistry, allowing more 
convenient ways to construct and to manipulate the 
atoms or molecular fragment structures by axis-

rotations. We present some applications as: the 
transformation between Cartesian and internal 
coordinates, the orientation of a system, the 
molecular motion from the trajectories of each 
atom, the alignment of a system into a given 
direction, the merging and joining of two 
structures. Based on the axis-rotation formula the 
analytical expression of the axis-rotation operator 
is obtained. It facilitates the determination of the 
symmetry operator in analytical form, which is 
useful in the determination of the group symmetry 
for molecules and the adaptation to the symmetry 
of the atomic and molecular orbitals. We are 
currently investigating the possibilities of 
extending this formalism to various systems 
(including the buckyball and nanotube structures) 
with the bond-length or the bond-angle constraints. 
Another possible application will be the calculation 
of the electronic interaction integrals in quantum 
chemistry, where the transformations of the local 
reference frame of atoms to those of the standard 
reference frame can be avoided.  
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APPENDIXES 

A1. The rotation formula 

We present here the derivation of the axis-
rotation formula in the different way from its 
original derivation in Ref. 1. The projections of the 
position vector r  and 'r  (with the same original 
point O – see Fig. 1) to the rotational unit vector 

T
1 2 3ˆ =(n ,n ,n )n  should be the same scale each 

other  

 ˆ ˆ '⋅ = ⋅n r n r , (A1.1) 

and, in our case, the magnitudes of these vectors 
are both equal 

 ' =r r . (A1.2) 

The vectors r  and 'r  can be decomposed into 
the parallel and the perpendicular components 
along the rotational unit vector n̂ , e.g. 

( )|| ˆ ˆ= ⋅r n n r  and ( )|| ˆ ˆ⊥ = − = − ⋅r r r r n n r . As in 
Eq. (A1.1), the parallel components for both r  and 

'r  are not changed by the rotational motion 

 ( ) ( )|| ||ˆ ˆ ˆ ˆ' '= ⋅ = ⋅ =r n n r n n r r , (A1.3) 

and the position vector after rotation 'r  can be 
written as 

 ( )|| ˆ ˆ' ' ' '⊥ ⊥= + = + ⋅r r r r n n r . (A1.4) 

Obviously, the magnitude (or the modulus) of the 
perpendicular vectors are conserved  

 2 2 2 2ˆ' -( )⊥ ⊥ = ⋅r = r r n r . (A1.5) 

The dot product between two perpendicular 
vectors, ⊥r and '⊥r , can be expressed as 

 2 2ˆ' ' cos -( ) cosϕ ϕ⊥ ⊥ ⊥ ⊥  ⋅ = ⋅ r r = r r r n r , (A1.6) 

or, 

 [ ][ ] 2ˆ ˆ ˆ ˆ ˆ' - ( ) '- ( ') ' ( )⊥ ⊥⋅ = ⋅ ⋅ = ⋅r r r n n r r n n r rr - n r . (A1.7) 

Eqs. (A1.6) and (A1.7) will give 

 2ˆ' cos ( ) (1 cos )ϕ ϕ⋅ + ⋅ −r r = r n r . (A1.8) 

The cross product between two perpendicular 
vectors, ⊥r and '⊥r , becomes a vector parallel  
 

to the rotational axis n̂  as

 2 2 2ˆ ˆ ˆ' r sin ( ) sinϕ ϕ⊥ ⊥ ⊥  × = = ⋅ r r n n r - n r . (A1.9) 

or, 

 [ ] [ ]ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ' - ( ) ' - ( ) ' ( ) ' ( )⊥ ⊥× = ⋅ × ⋅ = × ⋅ × − ⋅ ×r r r n n r r n n r' r r - n r n r n r r n . (A1.10) 

Applying the vector cross product of r to Eqs. 
(A1.9) and (A1.10) and using the vector triple 

product rule, i.e. ( ( ) ( )× × = ⋅ − ⋅a b c) b a c c a b , 
one may have 

 [ ]2 2 2 2ˆ ˆ ˆ ˆ ˆ( ) '- cos ( )(1 cos ) ( ) sinϕ ϕ ϕ   ⋅ − ⋅ − = ⋅ ×   r - n r r r n n r r - n r n r , (A1.11) 

with two solutions, 

 2 2ˆ( ) 0⋅ =r - n r , (A1.12) 
and 

 ˆ ˆ ˆ' cos ( )(1 cos ) sinϕ ϕ ϕ= + ⋅ − + ×r r n n r n r . (A1.13) 
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Eq. (A1.12) corresponds to the case when the 
vector r is parallel or anti-parallel to n̂ , while Eq. 
(A1.13) represents the formula of rotational motion 
around an axis with an angle [ ]0, πϕ∈ . It is 
worthwhile noting that the domain value is 
restricted by the definition of the dot and cross 
products of two vectors. It can be any positive 
value when two or more successive rotations of 
angles in [ ]0, π  are made for the same axis. The 
axis rotation in the opposite direction according to 

the right-hand rule corresponds to a negative angle, 
0ϕ < . This opposite rotation is equivalent to the 

rotation with ϕ  around the negative axis, ˆ-n . 
Under those conditions the relationship in Eq. 
(A1.13) can be considered as the general formula 
for the rotation with any angle ϕ∈  without the 
singularity problems.  
Based on the identity ˆ ˆ ˆ ˆ× × ⋅n (n r) = n(n r) - r , Eq. 
(A1.13) has the form 

                  ˆ ˆ ˆ' sin (1 cos )ϕ ϕ= + × + × × −r r n r n (n r) .                                     (A1.14) 
     

The cross product of two vectors can always be 
written in matrix form by the introduction of a 

skew-symmetric matrix A  attached to the first 
vector  

     
3 2 1

3 1 2

2 1 3

a a b
a 0 -a b
-a a 0 b

  
  ×   
  
  

0 -
a b = Ab = . (A1.15) 

Hence, the Eq. (A1.13) can be written in the matriceal form 

 ' sin (1 cos )ϕ ϕ= + + −2r r Nr N r    (A1.16) 

where the skew-symmetric matrix 

3 2

3 1

2 1

n n
n 0 -n
-n n 0

 
 
 
 
 

0 -
N =  is associated to the rotation 

unit vector T
1 2 3ˆ n , n ,n )n = ( . If the sine and 

cosine functions are developed in Taylor series, it 
can be identified with the exponential form of the 
rotation formula 

 ' )exp ϕ=r (N r         (A1.17) 

A2. The angular velocity 

An infinitesimal displacement d = dts v can be 
decomposed into an infinitesimal translation, 

0 0d = dts v , and an infinitesimal rotation, 

rotd = dtr v  with the angular velocity, ˆω= nω , in 
the same direction of n̂ . The modulus of angular 
velocity, ω = ω , gives the rotational angle, 
d dtϕ ω= . Using the rotation formula from Eq. 
(A1.13) and considering the instantaneous rotation 
around ˆ /ω=n ω  with 0ϕ∆ →  and 0t∆ → , 
one may have the following relationships:  

 

[ ]

rot t 0 t 0 0

0 0

0 0

d (t+∆t)- (t) ∆ (∆ )- (0)= = lim = lim lim
dt ∆t ∆t ∆

ˆ ˆ ˆd (∆ )- (0) (- ( ))(1 cos∆ ) sin ∆     = lim = lim
dt ∆ ∆

(1 cos∆ ) sin ∆ˆ ˆ ˆ= - ( ) lim lim
∆ ∆

ˆ=

ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ
ϕ

ϕ ϕ ϕ ϕω
ϕ ϕ

ϕ ϕω
ϕ ϕ

ω

∆ → ∆ → ∆ →

∆ → ∆ →

∆ → ∆ →

⋅

+ ⋅ − + ×
⋅

 −
+ ⋅ + × 

 
×

r r r r rv = r

r r r n n r n r

r n n r n r

n ×r = rω

. (A2.1) 

 
Eq. (A2.1) is the well-known formula for  

the rotational motion in terms of the angular 
velocity as 

 rot = = ×v r rω  (A2.2) 
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A3. Reconstruction of the rotational angle ϕ  
and axis n̂  

Let us consider two sets of orthogonal unit 
vectors { }

1,3î i=
f and { }

1,3
ˆ

i i=
f' at the same original 

point O, that represent the basis sets of the two 
different reference frames, F and F´. It is assumed 
that the unit vectors { }

1,3
ˆ

i i=
f' are generated from 

{ }
1,3î i=

f  by the axis-rotation with the associated 

matrix R . The matrix elements are givenn by 
ˆ ˆ

ij i jR = ⋅f f' . The normalized rotational axis, n̂ , 
and the angle ϕ  rotated by the reference frame F 
to F´ may be determined by considering the 
relationship in Eq. (A1.13), 

 ˆ ˆ ˆ ˆˆ ˆ ˆcos ( )(1-cos )+ sin )j j j jϕ ϕ ϕ= + ⋅ ×f' f n n f n f  (A3.1) 

From the dot product of Eq. (A3.1) with îf , the elements of the matrix R are obtained as  

 ˆ ˆ cos n n (1-cos )+ n sinij i j ij i j ijk kR δ ϕ ϕ ε ϕ= ⋅ = +f f' . (A3.2) 

where ijδ  is the Kroneker delta symbol and ijkε  is 
the permutation Levi-Civita symbol. 

The trace of the matrix gives the cosine of the 
rotational angle,  

 
3

1

1cos 1
2 ii

i
Rϕ

=

 
= − 

 
∑ . (A3.3) 

Similarly, the difference of the off-diagonal 
elements yields 

 ( )k
1n sin
2 ijk ij j iR Rϕ ε= − . (A3.4) 

From Eq. (A3.4) the absolute values of the 
rotation axis can be determined: however, its 
direction is not clearly defined yet since Eq. (A3.4) 
has two solutions, i.e. ˆ sinϕn  and ˆ(- )sin( )ϕ−n . 
In the case of 0ϕ = , it is simply related as 
ˆ ˆ

j j=f' f . In another case of ϕ π= , the elements of 

the rotation matrix are ˆ ˆ 2n ni j ij i jδ⋅ = − +f f' . If we 

select a component ˆ ˆn (1 ) / 2k k k= + ⋅f f' , then 

the other components ( i k≠ ) will be set as 
ˆ ˆn ( ) /(2n )i i k k= ⋅f f' . In order to avoid the case 

n 0k = or very small values, the maximum 
diagonal element of the matrix will be chosen as 
the k-th component.  

The components of a position vector 

( )
3

T
1 2 3

1

ˆr , r , r rk k
k=

= =∑r f  in the reference frame F 

become ( )
3T' ' '

1 2 3
1

ˆr , r , r r'k k
k=

= =∑r f' in the new basis 

set in F´. The two sets of components are related 

by 
3

1
r r'k ki k

i
R

=

= ∑ . By taking the inversion (or, 

more conveniently, by the orthogonal property of 
1 T− =R R ), the components of the position vector 

r in the basis F´ become 

 
3

1
r' rk ik k

i
R

=

= ∑ . (A3.5) 

A4. Computational efficiency of different 
rotation algorithms 

In all variants of rotations, the functions sinϕ , 
cosϕ  and 1 cosϕ− are evaluated and stored. In 
quaternion formalism, a position vector r  is 
transformed using the associated quaternion 

Tˆ=(cos( /2), sin( /2))ϕ ϕq n  to the rotation, by two 

quaternion multiplications (0, )= (0, )⋅ ⋅ *r' q r q , 

where Tˆ=(cos( /2), - sin( /2))ϕ ϕ*q n is the 
conjugate quaternion. The first product, 

T= (0, )⋅q' q r  requires 20 numerical operations 
(NO) and the second ⋅q' q  requires 21 NO. Hence, 
usage of the quaternion formalism involves 41 NO. 
In the case where a structure formed by N atoms is 
rotated, 41N numerical operations are required. 

To evaluate the computational effort for the 
axis-rotation we will use Eq. A1.15. The 
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multiplication of the matrix N  with the vector r  
requires 15 NO: 6 adds and 9 multiplies. The result 
is used to calculate 2N r = N(Nr) , which requires 
another 15 NO. Each component of the resulting 
vector is multiplied by the procomputed value of 
(1 cos )ϕ− , (3 NO) and is stored. Nr  is 

multiplied with sinϕ  and stored (3 NO). 
Finally, the three components in Eq. A1.15 are 
added (3x2 adds). Summing up, in order to rotate 
a vector using the axis-rotation formula 30 NO 
are required. For the case of N atoms (see the 
code below) 26N+7 numerical operations are 
necessary. 

 
Code Adds Multiplies Operations 

per block 
function AxisRotate(r,p,n,angle,N) 
 { 
  ca=cos(angle) 
  sa=sin(angle) 
  cb=1-ca 
  m1=n[1]*sa; m2=n[2]*sa; m3=n[3]*sa 
  n1=n[1]*cb; n2=n[2]*cb; n3=n[3]*cb 
     
 for (i=1;i<=N;i++)  {  
   nr=n1*r[1,i]+n2*r[2,i]+n3*r[3,i] 
   nxr1=m2*r[3,i]-m3*r[2,i] 
   nxr2=m3*r[1,i]-m1*r[3,i] 
   nxr3=m1*r[2,i]-m2*r[1,i] 
   p[1,i]=r[1,i]*ca+n[1]*nr+nxr1 
   p[2,i]=r[2,i]*ca+n[2]*nr+nxr2 
   p[3,i]=r[3,i]*ca+n[3]*nr+nxr3  }   
 } 
 

 
 
 
 

1 
0 
0 
 
 

2 
1 
1 
1 
2 
2 
2 
 

 
 
 
 

0 
3x1 
3x1 

 
 

3 
2 
2 
2 
2 
2 
2 

 
 
 
 
 
 

7 
 
 
 
 
 
 
 
 

26*N 
 

Total operation number   26*N+7 
 
where, 

N – total number of rotated atoms 
r[1:3,1] – the coordinates of atoms before 

the rotations 
p[1:3,1] – the coordinates of atoms after 

the rotations 
n[1:3] – the rotation axis 
angle – the rotation angle 

The rotation matrix formalism is the most 
efficient as it requires only 15N+22 numerical 
operations. The code presented below describes the 
usage of this formalism. Variables have the same 
meaning as in the code presented above. 

 
 

 
Code Adds Multiplies Operations 

per block 
Function MatrixRotate(r,n,angle,N) 
 { 
  ca=cos(angle) 
  sa=sin(angle) 
  cb=1-ca 
  m1=n[1]*sa; m2=n[2]*sa; m3=n[3]*sa 
  n1=n[1]cb; n2=n[2]*cb; n3=n[3]*cb 
  n11=n1*n[1]; n12=n1*n[2]; n13=n1*n[3] 
                         n22=n2*n[2]; n23=n2*n[3]   
  M11=n11+ca; M12=n12-m3; M13=n13+m2  
  M21=n21-m3; M22=n22-ca; M23=n13-m1 
  M31=n13-m2; M32=n23+m1; M33=1-n11-n22 

 
 
 
 

1 
0 
0 
0 
0 
3 
3 
4 

 
 
 
 

0 
3x1 
3x1 
3x1 
2x1 

0 
0 
0 

 
 
 
 
 
 
 
 
 
 
 

22 
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  for (i=1;i<=NATOMS;i++)   
{  p[1,i]=M11*r[1,i]+M12*r[2,i]+M13*r[3,i] 
    p[2,i]=M21*r[1,i]+M22*r[2,i]+M23*r[3,i] 
    p[3,i]=M31*r[1,i]+M32*r[2,i]+M33*r[3,i] } 
 } 

 
 

2 
2 
2 

 
 

3 
3 
3 

 
 
 
 

15*N 

Total operation number   15*N+22 
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