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A quantitative structure-melting point relationship was developed to predict the melting point of some pyridinum bromides. A set of 
1497 zero- to three-dimensional descriptors were used for each molecule in the data set. Multivariate adaptive regression spline 
(MARS) was successfully used as a descriptor selection method and also for mapping model. The root mean square error and 
coefficient of determination were obtained as 17.36 and 0.8750, respectively. The results were compared with those obtained from 
other model, which after selection of descriptors by MARS, multiple linear regression (MLR) was applied for modeling. The results 
showed MARS can be used as a powerful model for prediction of melting point of pyridinum bromides. 

 
 

INTRODUCTION* 

Ionic liquids (ILs) have been used as a media 
for a wide range of reactions and separation 
processes. 1-3  They can be considered as a new 
class potentially “green” solvents due to their 
specific properties. In particular, the nonvolatile 
nature of many ILs4 could eliminate problems 
associated with the use of traditional volatile 
organic solvents which may pose health, fire, and 
environmental hazards.5 

The melting point is a fundamental physical 
property of compounds, which has been found 
wide use in chemical identification, as a criterion 
of purity and for the calculation of other 
physicochemical properties such as vapor pressure, 
aqueous solubility and phase equilibrium 
properties.6 For ILs, melting points have a special 
significance because the solubility of ILs in water 
or organic solvents is strongly correlated with their 
melting points.7  However, basic data of melting 
points exist only for relatively few ILs. 
Development of melting point-quantitative 
structure–property relationship (QSPR) models for 
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ILs will provide great aid in molecular design8 and 
help to screen candidate lead compounds in search 
for new room temperature ionic liquids. 

For investigation of correlation between the 
structural descriptors and melting point of ILs 
some QSPR methods have been applied.9-11 

The most important two factors influencing the 
quality of QSPR model are the selected descriptors 
and the method to build model, respectively. 
Therefore, variable selection methods are 
important for producing a useful predictive model. 
A suitable variable selection ensures the model 
stability and the consistency of relationship 
between the descriptors and property.12 In this 
work shuffling cross-validation technique was used 
for descriptor selection. To this purpose the data 
set was divided into several subsets, and variable 
selection process was performed for different 
combinations of these subsets by MARS. Then the 
most frequent descriptors in the models were 
selected as the most important variables describing 
the melting point. The selected descriptors were 
then used to design the MARS model. Finally this 
model was applied to predict melting point of ILs. 
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The results of this work were compared with those 
obtained using MARS for the descriptor selection 
and multiple linear regression for descriptor 
mapping. The results were also compared with the 
previous work on the prediction of melting point of 
these compounds.11 The results are very good and 
indicate the power of the descriptor selection and 
mapping techniques in developing methods with 
good prediction ability.  

RESULTS AND DISCUSSION 

Multivariate adaptive regression splines 

MARS is a local modeling technique, dividing 
the data space in several possible overlapping 
region and fitting truncated spline functions in 
each region. A truncated spline function consists of 
a left-sided, Eq. (1), and a right-sided, Eq. (2), 
segment, separated by a so called knot location.13 
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Where t is called the knot location; 

)( txbq −− and )( txbq −+  are spline functions 

describing the regions to the left and right of the 
given t; q indicates the power (>0) to which the 
spline is raised; the subscript "+" indicates a value 
of zero for negative values of argument. A spline 
function is also called a basis function (BF). For 
each of the explanatory variables MARS selects 
the pair of splines and the knot location, which best 
describe the response variable. In a next step, the 
different basis functions are combined in one 
multidimensional model, which describes the 
response as a function of the explanatory variables. 
The result is a complex non-linear model of the 
form: 
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where ŷ  is the predicted value for the response 
variable; 0a , the coefficient of the constant basis 
function; M, the number of basis functions and 

mB  and  ma the mth base function and its 
coefficient.13-15 

A MARS analysis generally consists of three 
steps. The first step consists of a forward stepwise 
procedure which selects the best spline functions in 
order to improve the model and the second step in 
the MARS methodology consists of a pruning step. 
A backward elimination procedure is applied in 
which the basis functions with the lowest 
contribution to the model are excluded. Eventually, 
the selection of the optimal model is performed in 
a third step. The selection is based on an evaluation 

of the predictive properties of the different models, 
which often are determined using cross validation 
or a new independent test set. The MARS models 
were built using ARESLab toolbox.16 

Further details on MARS modeling are given 
elsewhere.14  

Selection of the best descriptors  
by Shuffling cross validation MARS 

In this technique, the data set was divided into 
several subsets, and variable selection procedure 
and model developing was performed for all 
combinations of the subsets. Then the most 
frequent descriptors appeared in the developed 
models would be selected as most important 
variables in describing the variation in the 
property. The use of shuffling cross validation 
technique guarantees that the developed model is 
robust and reliable and it is not obtained by chance. 

In this work, the molecules were divided into 
twelve groups, six groups of them consisted of ten 
molecules and six consisted of eleven molecules. 
Each group was selected in such a way that it 
consisted of all range of melting point amounts 
from low to high. In the descriptor selection 
procedure, ten groups were applied as calibration 
set and the two remaining subsets were used as 
validation set for evaluating the selected 
descriptors. 66 MARS models were made with 
various calibration and validation sets. These 
calibration sets contain different molecules; 
therefore various descriptors are expected to be 
selected by MARS method.  
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Fig. 1 – The selected descriptors and the frequency of each one in the shuffling-MARS models. 
 

The selected descriptors and frequency of each 
descriptor in shuffling-MARS models are shown in 
Fig. 1. As can be seen in Fig. 1; eight descriptors 
have the highest frequency between the others. 
Among these eight descriptors two descriptors 
have high correlation with the others; therefore six 
descriptors were selected by MARS model. The 
MARS model was designed with six selected 
descriptors, complementary information content 
(CIC0, neighborhood symmetry of 0-order), 3D-
MoRSE - signal 05 / weighted by atomic masses 
(Mor05m), Geary autocorrelation - lag 4 / 
weighted by atomic Sanderson electronegativities 
(GATS4e), mean atomic van der Waals volume 
(Mv, scaled on Carbon atom), local dipole index 
(LDip) and sum of geometrical distances between 
N..N (G(N..N)). These six descriptors are among 

topological, 3D-MoRSE, 2D autocorrelations, 
constitutional, charge and geometrical descriptors. 
The constructed MARS model with these six 
descriptors has RMSE (root mean square error) 
and R2, 20.52 and 0.8218, respectively. Six data 
points in this model lie outside the range of 2s 
(95%confidence limit) from the predicted value 
(structures 33, 48, 57, 93, 96 and 102 from data set 
of Katritzly work 11), therefore these molecules 
were not used in the future analysis. Finally after 
elimination of these six data point, the best 
obtained model has RMSE=17.36 and R2= 0.8750. 
The melting temperatures predicted by this model 
are included in Table 1, and the corresponding 
correlation chart and residual are given in Figs. 2 
and 3, respectively. 

 
Table 1 

Experimental and calculated melting points for Pyridinum bromides 
Cation mp (°C) Cation mp (ºC) 

N-substituent Other substituents Exp. Calc. N-substituent Other substituents Exp. Calc. 
decyl 3-pentyl 30.0 40.7 2-hydroxyethyl  110.0 129.1 
11-propionyloxyundecyl  35.0 32.5 allyl 4-hydroxymethyl 111.0 122.3 
benzyl 4-dibenzyl; 3-ethoxycarbonyl 35.0 17.3 5-hexynyl  114.0 98.9 
octyl 4-propyl 37.0 50.1 2-cyanoethyl 3-methyl 116.0 134.1 
tetradecyl 4-hexyl 37.0 34.9 pyridinyl  118.0 96.2 
tetradecyl 3-pentyl 39.0 32.8 isopropyl 4-hydroxymethyl 119.0 101.0 
decyl 4-ethoxycarbonyl 40.5 34.3 3-chloropropyl  120.0 132.1 
dodecyl 4-propyl 41.0 45.1 ethyl  120.5 107.4 
undecyl  41.9 48.0 ethyl 4-cyan 121.0 127.4 
octyl 4-ethyl 42.5 52.4 ethyl 4-methyl 121.0 124.0 
dodecyl 4-ethyl 43.5 47.1 isopropyl 2-hydroxymethyl 122.0 96.5 
decyl  44.5 49.3 2-hydroxyethyl 3-hydroxy 122.5 129.8 
dodecyl  45.0 46.6 2-hydroxyethyl 3,4-dimethyl 126.5 104.6 
hexyl 2-(2-methyloctyl) 47.0 43.5 3,3-dimethylallyl 4-methyl 127.5 107.2 
ethoxycarbonylmethyl 5-butyl; 2-methyl 51.0 68.5 1-methyl-2-oxopropyl 2-methyl 133.0 115.2 
2,5-dimethoxyphenethyl  53.8 68.6 2-cyano-ethyl 3,4-dimethyl 133.0 131.3 
tridecyl  54.5 48.3 ethoxycarbonylmethyl  137.0 140.1 
4-fluoro-benzyl  57.5 81.3 3-bromopropyl 4-methyl 139.5 139.4 

tetradecyl  59.0 47.2 (Z)-3-methylpent-2-en-4-
inyl  139.5 110.5 
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Table 1 (continued) 

butyl 4-ethoxycarbonyl 60.0 66.4 methyl 3-methoxycarbonyl 141.0 161.6 
2-methylpropyl  64.0 66.1 2-cyanoethyl 3-amino 142.0 170.0 
methyl 3-(3-hydroxypropyl) 64.0 78.3 1-methyl-2-oxopropyl  144.0 145.3 
benzyl 3-methyl 64.5 73.7 cyanomethyl 3,5-dimethyl 144.0 131.9 
butyl 2-benzylsulfanyl 65.0 57.8 methyl 4-methyl-3-hydroxy 145.8 128.0 
2-cyclohexyl-2-oxo-ethyl  69.0 51.4 2-cyanoethyl 4-methyl 147.0 167.2 
methylpropyl  69.5 66.3 2-cyanoethyl  149.0 145.8 
2-pyridinyl  70.4 85.7 methyl  150.0 158.1 
2-(ethoxycarbonyl)ethyl  71.0 103.2 methyl 3-hydroxy 153.5 156.0 
1-(ethoxycarbonyl)propyl  73.0 78.4 vinyl  154.5 143.2 

propyl  75.5 71.5 (E)-3-hydroxyprop-1-en-
1-yl  156.5 148.5 

ethyl 3-diethylcarbamoyl 77.0 94.5 2-carboxyallyl  156.5 160.4 

2-phenoxyethyl  78.0 83.8 2-cyanoethyl 3,5-dimethyl 160.5 123.7 
methyl 4-(3-hydroxypropyl) 79.0 98.4 3-carboxypropyl  163.0 147.1 
ethyl 2,6-dimethyl 80.0 113.1 methyl 4-methoxycarbonyl 164.0 152.6 
methyl 3-pyridinyl 80.0 104.5 ethyl 4-cyano 165.5 145.9 
isopropyloxycarbonylmethyl  8.0 114.3 cyanomethyl  167.0 155.4 
morpholinomethyl 4-methyl 82.5 77.9 vinyl 4-methyl 169.0 170.7 
methyl 4-benzyl 85.5 102.9 isopropyl 4-methoxy 169.5 136.9 
2-fluoroethyl 3-ethoxycarbonyl 87.0 108.3 methyl 4-methyl 173.0 147.8 
phenethyl 4-methyl 89.9 81.2 methoxycarbonylmethyl  174.5 152.7 
butyl 3-carboxy 91.0 110.8 propyl 3-carbamoyl 175.0 142.9 
allyl 3-diethylcarbamoyl 92.0 89.0 ethyl 4-dimethylamino 176.0 146.1 
bis(ethoxycarbonyl)methyl  93.5 87.7 prop-2-ynyl 4-methyl 178.0 149.2 
4-acetoxybutyl 3-hydroxy 95.0 97.7 cyanomethyl 4-methyl 179.0 187.7 
benzyloxy  95.0 81.7 2-fluoroethyl  180.0 159.7 
allyl  95.5 118.9 methyl 4-acetyl 183.5 161.8 
2-hydroxyethyl 3-methyl 97.0 102.8 allyl 4-(hydroxyiminomethyl) 185.0 169.4 
ethyl 2-methyl 97.0 108.6 hydrazinocarbonylmethyl  185.5 180.8 
isopropyl  97.0 111.5 2-oxopropyl  187.0 181.6 
butyl  97.5 63.5 ethyl 4-carbamoyl 188.0 185.7 
ethyl 4-(4-pyridyl) 98.0 137.4 (E)-2-carboxy-1-ethyl  188.5 191.6 
allyl 3-hydroxy 98.0 138.9 2-propionamido  189.5 176.7 
benzyl  99.0 78.0 (E)-2-carboxy-1-ethyl 3-methyl 190.5 184.9 
methyl 4-(2-ethoxycarbonylethyl 99.5 92.1 allyl 2-(hydroxyiminomethyl) 192.5 175.6 
allyl 3-formyl 100.0 132.8 2-oxopropyl 2-methyl 196.0 175.7 
acetonyl 2,6-dimethyl 104.0 149.0 2-hydroxyethyl 2-(hydroxyiminomethyl) 198.5 184.0 
ethyl 3-hydroxy 106.0 116.7 cyanomethyl 2,4-dimethyl 199.0 201.4 
ethoxy 4-methoxy 108.5 110.3 carboxymethyl  199.0 204.1 
propyloxycarbonylmethyl  110.0 96.3 2-carbamoylethyl  199.0 201.8 
allyl 2-hydroxymethyl 110.0 120.5 carbamoylethyl  200.0 226.0 
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Fig. 2 – Plot of the calculated melting point against the experimental melting point. 
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Fig. 3 – Plot of the residuals versus experimental values of melting point. 

 
This model contains a constant B1 (=1) and nine 

basis function. These nine BFs represented by B2 
to B10 as well as their coefficients ai are shown in 

Table 2. As an example of a basis function in the 
model, consider B2: 

    

               3.988    CIC0 if              CIC0-3.988
  otherwise                                   0{0988.3 <=−CIC   (4) 

 

this means that, when CIC0<3.988, the second 

term of equation of ∑
=

=
38

1i
ii BaLogBCF is 

56.942(3.988-CIC0), otherwise it is 0. Fig. 4 also 
shows variations of melting point versus CIC0. 
These variations are for CIC0<3.988 and this is in 
agreement with MARS equation.  

 
Table 2 

List of basis function Bi of the MARS model and their coefficients, ai 

Bi  Definition  a
i
  

B1  1  91.576 
B2  3.988 - CIC0 56.942 
B3  LDip -0.194 474.5 
B4  Mv -0.62 -770.49 
B5  0.812 - GATS4e 97.281 
B6  4.35 - G(N..N) -3.4328 
B7  Mor05m -1.984 36.158 
B8  -1.984 - Mor05m -17.271 
B9  0.6 - Mv -3728.8 

B10 0.59 - Mv 4047.3 
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Fig. 4 – Variations of melting point versus descriptor of  CIC0. 

 
CIC0 is the first descriptor, complementary 

information content (neighborhood symmetry of 
0-order). CIC0 is from topological descriptors. 
This descriptor describes the connectivity and 
branching in a molecule and can be related to 
molecular shape and symmetry. The decreasing in 
melting point with increasing in CIC0 reflects the 
fact that cations with lower symmetry have weaker 
coordination ability that leads to lower melting 
temperatures. The second descriptor is local 
dipole index (LDip). This descriptor is a molecular 
descriptor calculated as the average of the charge 
differences over all i-j bonded atom pairs. The 
MARS equation shows the melting point increases 
with increasing in LDip. This result is an accepted 
fact which larger charge density (charge/volume 
ratio) led to stronger bonding and higher melting 
point. The third descriptor is mean atomic van der 
Waals volume (Mv) which it is calculated by 
dividing the sum of the van der Waals volumes by 
the number of atoms. The fourth descriptor is 
Geary autocorrelation - lag 4 / weighted by 
atomic Sanderson electronegativities (GATS4e). 
Geary coefficient (c(d)) is general index of spatial 
autocorrelation that, if applied to a molecular 
graph, can be defined as: 17 

        
where wi is any atomic property such as 
electronegativities, , is its average value on the 

molecule, A is the atom number, d is the 
considered topological distance (i.e. the lag in the 
autocorrelation terms), δij, is a Kronecker delta  
(δij, = 1 if dij = d, zero otherwise). ∆ is the sum of 
the Kronecker deltas. Strong autocorrelation 
produces low values of this index. Therefore it 
seems with increasing at difference of 
electronegativity, this coefficient is decreased and 
according to MARS model, melting point is 
increased. G(N..N) (sum of geometrical distances 
between N..N) from geometrical descriptors is the 
fifth descriptor and the last descriptor is Mor05m 
from MoRSE class descriptors. MoRSE 
(molecular representation of structures based on 
electron diffraction)- signal 05 / weighted by 
atomic masses encodes structural features such as 
mass and amount of branching.18 The negative 
coefficient in MARS equation shows that with 
increasing in mass and branching, melting point is 
decreased.  

Validation 

To validate the developed MARS model for the 
prediction of melting points of ionic liquids, data 
set was divided into three subsets A, B, and C. The 
MARS models were obtained for the subsets A+B, 
A+C, and B+C with six selected descriptors. The 
resulting new MARS models were used in turn to 
predict the melting points for subsets C, B, and A, 
respectively. Square of correlation coefficients and 
root mean square error of calibration and 
prediction are presented in Table 3. The correlation 
chart of the validation showing the summary of all 
three predictions is given in Fig. 5. 

 

(5)
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Table 3 

Validation of MARS model with six descriptors 

Cal= A+B Pre=C Cal=A+C Pre=B Cal=B+C Pre=A 

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 

16.34 0.8898 24.82 0.7422 17.79 0.8708 22.56 0.7818 17.96 0.8634 20.88 0.8263 

 

R2 = 0.7858
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Fig. 5 – Cross validation for MARS model. 

 
Comparison with other models 

The other model was also constructed for the 
sake of comparison. In this model, the selected 
descriptors by MARS were used for building of 
multiple linear regression (MLR) model. In other 
words, MARS was used for descriptors selection 
and then MLR was applied for model 

development. MLR model was also made with the 
same six selected descriptors in the previous step. 
Initially 126 molecules were applied to obtain the 
MLR model. Thus the equation MLR model was 
obtained as below with RMSE=32.96 and 
R2=0.5401: 

  

 N)2.607G(N..-13.803LDip
285.039Mve4.008GATS4-Mor05m821.17CIC089.7553.54..

+
+++−=PM

 (6) 

It can be seen that MARS model is superior 
over the MLR model which applied the same 
descriptors and shows improvements for R2 and 
RMSE.  

In comparison with previous reported work on 
these 126 ionic liquid11 (the same data set in this 
work) with R2= 0.7883 and s= 23.0 K, our model 
has better statistical results with RMSE=20.52 and 
R2=0.8218 for 126 compounds and RMSE=17.36 
and R2= 0.8750 for 120 compounds. 

EXPERIMENTAL 

Data set 

The known experimental melting point values of the 126 
pyridinium bromides were taken from the literature11 and 
shown in Table 1. 

Calculation of descriptors 

The 3-D structures of these compounds were optimized 
using Hyper Chem software (version 7.0) with semi empirical 
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AM1 optimization method. After optimization a total of, 1497 
0-, 1-, 2-, and 3-D descriptors were generated using Dragon 
software (version 3.0).  

CONCLUSION 

The main aim of the present work was the 
development of a QSPR method using multivariate 
adaptive regression spline methodology for both 
descriptor selection and for feature mapping of 
melting points of ILs. It is shown in this work that 
MARS as feature selection method generates very 
predictive descriptors and also it is a powerful 
mapping tool. The most significant descriptors 
appeared in the model are: complementary 
information content reflecting the coordination 
ability of a cation and atomic van der Waals 
volume (Mv) and local dipole index (LDip) which 
show larger charge density (charge/volume ratio) 
led to stronger bonding and higher melting point. 
This seems the descriptors used in this model are 
in consistence with the suggested experimental 
factors to affect the melting point of ionic 
compounds. 
 Because of the dominating role of the cation in 
determining the properties of ionic liquids, the 
developed models can help to suggest compounds 
in search for new potential ILs. 
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