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Graph theory plays an important role in modeling and designing 
any chemical structure or network. The molecular topological 
descriptors are the numerical invariants of a molecular graph and 
are very useful for predicting their bioactivity. In this paper, we 
have studied the chemical graph of crystal structure of titanium 
difluoride TiF2, crystallographic structure of cuprite Cu2O and 
Boron-Carbon crystal structure of 34 2 [ ]P m BC s,t,n . We have 
discussed and computed exact results for degree based 
topological indices namely Zagreb indices, Zagreb coindices and 
Sanskruti index. 
 

 
 

 
INTRODUCTION* 

Graph theory is a standout amongst the most 
extraordinary and one of a kind branch of 
mathematics by which the showing of any structure is 
made possible. As of late, it achieves much 
consideration among scientists on account of its 
extensive variety of utilizations in Computer science, 
electrical systems (network), interconnected systems 
(network), biological networks, and in chemistry, and 
so forth. The chemical graph theory (CGT) is the 
quickly developing zone among scientists. It helps in 
comprehension about the basic properties of a 
molecular graph. There are a considerable measure of 
molecular compounds, which have assortment of 
utilizations in the fields of business, commercial, 
industrial, pharmaceutical chemistry, in every day life 
and in research facility. 
                                                       
* Corresponding author: kamransiddiqui75@gmail.com 

A relationship exists between molecular 
compounds and their atomic structures. The 
control and examination of molecular compounds 
data is made possible utilizing molecular 
descriptors. Chemical graph theory is a branch of 
mathematical chemistry in which apparatuses of 
graph theory are applied to model the chemical 
phenomenon mathematically. Likewise, it 
identifies with the nontrivial uses of graph theory 
for solving molecular problems. This theory 
contributes a noticeable part in the field of 
chemical sciences. 

A new subject namely Chem-informatics which 
is a combination of chemistry, mathematics and 
information science helps to analyzes (QSAR) and 
(QSPR) connections that are used to predict the 
bioactivity and physiochemical properties of 
chemical  compounds. A  topological  index  is  a 
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numerical esteem that is processed mathematically 
from the molecular graph. It is related with 
chemical constitution demonstrating for correlation 
of chemical structure with numerous physical, 
chemical properties and biological activities, see 
details.1,10 

For a given  graph where  to be 
the vertex set and  to be the edge set of . The 
degree  of  is the quantity of edges of  
incident with . The length of a most limited path 
in a graph  is a distance  amongst  and 

 represented by a polynomial, a numerical value 
or by matrix form. There are sure sorts of 
topological indices primarily eccentric based, 
degree based and distance based indices etc. In this 
paper, we have dealt with degree based topological 
indices. 

The Zagreb indices were conceived in 1972 by 
Gutman and Trinajestic,11,12 they are characterized 
as:  

  (1) 

  (2) 

In 2008, Došlić put forward the first Zagreb 
coindex and second Zagreb coindex, defined as4 

  (3) 

  (4) 

In 2016, I. Gutman et al.7 proves the following 
Theorems: 

Let  be a graph with  vertices and 
 edges. Then 

 

 (5) 
 

Let  be a graph with  vertices and 
 edges. Then 

  (6) 

In 2016, S. M. Hosamani14 introduced the 
Sanskruti index  for a molecular graph , 
defined as: 

  (7) 

For further study and research about the 
topological indices see.1,6,13,16,21–28  

Main results 

In this section, additive topological indices 
mainly first and second zegreb indices, first and 
second zegreb coindices and Sanskruti index of 

,  and 
 are computed. Moreover, the 

exact values are derived for these indices of the 
chemical graphs ,  
and .  

Crystallographic structure of Cu2O 

Among different transition metal oxides,  
has pulled in extensive consideration as of late 
attributable to its recognized properties and non-
toxic nature, minimal effort, plenitude, and basic 
creation process. These days, the promising uses of 

 chiefly concentrate on chemical sensors, 
solar oriented cells, photocatalysis, lithium-particle 
batteries and catalysis. The chemical graph of 
Crystallographic structure of  portrayed in 
Figure 1 and Figure 2, for more data about this 
structure see.2,30,31 Let  be the 
chemical graph of  with  unit cells in 
the plane and  layers. We develop this graph first 
by taking  units in the plane and after 
that leveling up in  layers. The quantity of 
vertices and edges of  are 

 and , 
respectively. 

In  the number zero degree 
vertices is , the number of one degree vertices is 

, the number of two degree 
vertices is  

 and the number of four degree 
vertices is + 1.  

In the next Theorem, we have computed the 
exact result of first and second Zagreb index for 
the chemical graph  Cu2O [m,n,t]. 
 

Theorem 3.1. Consider the graph of 
 with 1, then its first 

and second Zagreb index is equal to,  

 

  (8) 
 

   (9) 
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Fig. 1 – Crystallographic structure of Cu2O. (a) In lattice of Cu2O the structural characteristics of the atoms of Cu and O. The 
lattice of Cu2O is formed by interpenetrating the lattices of Cu and O into each other. (b) Unit cell of Cu2O, where copper and 
oxygen atoms are shown in small blue and in large red spheres. In the lattice of Cu2O, every Cu atom is connected with two O 

atoms, and every O atom is connected with four Cu atoms. 
 

 
Fig. 2 – Crystallographic structure of Cu2O[3,2,3].  

   
Table  1 

Degree based partition of edges of Cu2O [m,n,t], of end vertices of each edge   

(dp, dq) Frequency 
(1,2) 4n + 4m + 4t – 8 
(2,2) 4nm + 4nt + 4mt – 8n – 8m – 8t + 12 
(2,4) 4(2nmt – nm – nt – mt + n + m + t – 1) 

 
Proof. Let  be the crystallographic structure of 

. The first Zagreb index is 
computed as below:  

 

 
 

 
  

 
By using Table 1 and Equation (1) the second Zagreb index are computed as below:  
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 . 
 

The first and second Zagreb coindices for the 
chemical graph  computed are in 
the next Theorem. 

Theorem 3.2. Consider the graph of 
 with 1, then its 

first and second Zagreb coindices are equal to,  
 

  
  
  

   

Proof. Let  be the crystallographic structure of 
. Then by using Equations (3),(5) 

and Theorem 1 first Zagreb coindex is computed as 
below:  

 

 
  
  
  
  
  

 

Now, by using Equations (4),(6) and Theorem 1 second Zagreb coindex is computed as below:  
 

  

  

  
  
  

  

  
Fig.  3 – Comparison of indices of 2 [ , , ]G Cu O m n t≅ , for fix t = 10: in (a) first Zagreb index M1(G) and first Zagreb coindex 

1 ( )M G are compared. The blue and cyan colors represents M1(G) and 1 ( )M G , respectively. Its easy to see that in the given domain 

1 ( )M G  is more dominating. In (b) second Zagreb index  M2(G) and second Zagreb coindex 2 ( )M G  are compared. The red and 

gold colors represents  M2(G) and 2 ( )M G , respectively. Its easy to see that in the given domain 2( )M G  is more dominating. over 

the values of 2 ( )M G  are largest and the values of  M1(G) are smallest. 
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 Table  2 

Based on sum of degrees of neighborhood of end vertices of each edge the partition of edges of  Cu2O [m,n,t],  with , , 2m n t ≥  

(Sp, Sq) Frequency 
 (2,4) 4m + 4n + 4t – 8 
 (4,6) 4mn + 4mt + 4nt – 8m – 8n – 8t + 12  
 (5,8) 4n + 4m + 4t – 8 
 (6,8) 4mn + 4mt + 4nt – 8m – 8n – 8t + 12 
 (8,8) 8mnt – 8mn – 8nt + 8m + 8n + 8t – 8 

 
The Table 2 shows partition of edges of the 

chemical graph  depending on the 
sum of degrees of the neighbouring vertices of end 
vertices of each edge. The next Theorem shows the 
exact value of Sanskruti index of . 

Theorem 3.3. Consider the graph 
 with , then its 

Sanskruti index  is equal to  

 
  

  
   

Proof. Let  be the crystallographic structure of 
. Then by using Table 2 and 

equation (7) the Sanskruti index  is computed 
as follows.  

 

 

 
 

 
  

 
  

   
Crystal Structure of Titanium Difluoride 

Titanium Difluoride is a water insoluble 
Titanium source for use in oxygen-sensitive 
applications, for example, metal production. 
Fluoride compounds have various applications in 
current advances and science, from oil refining and 
drawing to engineered organic chemistry and the 
making of pharmaceuticals. 

The chemical graph of crystal structure of 
titanium difluoride  is described in 
Figure 4, for more details see.3,10 Let 

 be the chemical graph of  
with  unit cells in the plane and  layers. 
We construct this graph first by taking  
unites in the plane and then storing it up in  
layers. The number of vertices and edges of 

 are 

 and , respectively. 
In  the number of one degree 

vertices is , the number of two degree vertices is 
, the number of four degree 
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vertices is  
and the number of eight degree 

vertices is  . 

 

 
Fig. 4 – Crystal Structure Titanium Difluoride TiF2[m,n,t], (a) represents unit cell of of  TiF2[m,n,t], with  Tiatoms in red and F 

atoms in green (b) crystal structure of TiF2[4,1,2]. 
 

Table  3 

  Degree based partition of edges of  TiF2[m,n,t], of end vertices of each edge   

 (dp, dq)  Frequency 
(1,4)  8 
(2,4)  8(m + n + t – 3)  
(4,4) 16(mn + mt + nt) – 16(m + n + t) + 24  
(4,8) 32mnt – 16(mt + mn + nt) – 8    

 
The exact result of the first and second Zagreb 

index for the chemical graph  is 
computed in the following theorem. 

Theorem 4.1. Consider the graph 
 with , then its first 

and second Zagreb index is equal to,  
 

  
  

  
   

Proof. Let  be the crystal 
structure of titanium difluoride. Then by using 

Table 3 and the equation (1) the first Zagreb index 
is computed as below: 

 
  
 

 
  

 
Now, by using Table 3 and the equation (2) the second Zagreb index is computed as below:  
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The first and second Zagreb coindices for the 
chemical graph  computed are in the 
next Theorem. 

Theorem 4.2. Consider the graph of 
 with , then its first 

and second Zagreb coindices are equal to,  
 

  
  
 

 
   

Proof. Let  be the crystallographic structure of 
. Then by using Equations (3),(5) 

and Theorem 3 first Zagreb coindex is computed as 
below:  

 
  
  
  
  
  
  

 
Now, by using Equations (4),(6) and Theorem 3 second Zagreb coindex is computed as below:  

  

  

 
  

 
  

   
Fig. 5 – Comparison of indices of 2[ , , ]G TiF m n t≅  for fix t = 10: in (a) first Zagreb index M1(G) and first Zagreb coindex 

1 ( )M G are compared. The blue and cyan colors represents M1(G) and 1 ( )M G , respectively. Its easy to see that in the given domain 

1 ( )M G  is more dominating. In (b) second Zagreb index  M2(G) and second Zagreb coindex 2( )M G are compared. The red and 

gold colors represents  M2(G) and 2 ( )M G , respectively. Its easy to see that in the given domain 2( )M G  is more dominating. over 

the values of 2 ( )M G  are largest and the values of  M1(G)  are smallest. 
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Table  4 

Edge partition of TiF2[m,n,t], , , 2m n s ≥ based on degree sum of end vertices of each edge   

(Sp, Sq) Frequency  
(4,13)  8 
(8, 18)  8(m + n + t – 3)  
(13,16)  16  
(16, 18)  16(mn + mt + nt) – 16(m + n + t) + 8   
(16, 24)  32mnt – 16(mn + mt + nt) + 8  
(18, 32)  8(m + n + t – 2)  

 
The Table 4 shows the edge partition of the 

chemical graph ,  based 
on the degree sum of end vertices of each edge. 
The next Theorem shows the exact value of 
Sanskruti index of , . 

Theorem 4.3. Consider the graph 
 with , then its 

Sanskruti index  is equal to  

 

 
 

Proof.  Let  be the crystallographic structure 
of  . Then by using Table 4 and 

equation (7) the Sanskruti index  is computed 
as follows.  

 
  

  

  

  
  

  

  
   

Boron-Carbon crystal structure  
of 34 2 [ ]P m BC s,t,n  

The vast majority of Boron and Carbon systems 
denoted as B-C binary systems show high 
imperviousness to oxidation furthermore, response 
with ferrous metals, contrasted and the carbon-
based materials.9,15,18 Boron carbide B4C is a hard 
crystal that can be created at surrounding pressure, 
8,17 while B-doped diamond demonstrates a 
superconducting progress temperature of .5 It is 
of extraordinary enthusiasm for diamond-like BCx 
systems to seek after predominant superhard 
crystals that are not just thermally and chemically 
more stable(steady) than diamond, yet in addition 
have intriguing electrical properties.9,20,29 

Liu et al.19 investigated the crystal structures 
with particle swarm optimization (PSO) algorithm 

consolidated with first-principles structural 
optimizations. Three metallic setups, to be specific 

,  and  stages were 
revealed. With the bond resistance demonstrate, 
the Vickers hardness for all three stages is bigger 
than  GPa, demonstrating the superhard nature 
of these polymorphs, which ought to be tested 
experimentally. Furthermore, all stages have a 
superconductive transition at low temperature. 

Let  be the chemical 
graph of  with  unit cells in the 
plane and  layers. We construct this graph first by 
taking  unites in the plane and then 
storing it up in  layers. Some description of the 
construction are given in Figure 6 and Figure 7. 
The number of vertices and edges of 

 are  
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 and .  
In  the number of one degree 
vertices is , the number of two degree 
vertices is , the number of three 
degree vertices is  

and the number of four degree vertices 
is . The 
edges of  are partitioned into 
seven sets, say  and . 
The set  contains  edges , where  and 

. The set  contains  edges 
, where  and . The set  contains 

 edges , where  and 
. The set  contains  

edges , where  and . The set  
contains  edges , where 

. The set  contains 
 edges , 

where  and . The set  contains 
 

edges , where . The edge partition 
is shown in Table 5 of  with 

.

 

 
Fig. 6 – Crystal structures of 34 2 [ ]P m BC s,t,n , (a) chemical graph of unit cell,  

(b) 34 2 [1,1,3]P m BC  with s = t = 1 and n = 3 layers. Carbon atom are black Boron atoms are brown. 

   

 
Fig. 7 – Crystal structures of 

34 2 [4,2,1].P m BC  

 
Table  5 

Degree based partition of edges of 
34 2 [ ]P m BC s,t,n , of end vertices of each edge   

(dp, dq)  Frequency 
(3,1) 8 
(4,1) 2(s + t) – 4  
(3,2) 4(t + s + 2n – 4)  
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Table 5 (continued)

(4,2) 4(s – 1)(t – 1)  
(3,3) 4(n – 1)(t + s – 2)  
(4,3)  2n(s + t) + 2(n – 1)(s + t – 2)  
(4,4)  8snt – 6sn – 4st –6nt + 4s + 4n + 4t – 4 

 
In the following Theorems we have computed 

the first and second Zagreb indices, the first and 
second Zagreb coindices of the chemical graph 

. 

Theorem 5.1. Consider the graph 
, for , then its 

first and second Zagreb indices are equal to 

 
  
  

   
Proof. Let  be the graph of 

. Then by using Table 5 and the 
equations (1),(2) the first and second Zagreb 

indices are computed as below: 

 
  
 

 
  
  
  

  
  
  
  
  
  

   
Theorem 5.2. Consider the graph of 

 with , then its 
first and second Zagreb coindices are equal to,

 

    

 
 

Proof. Let  be the crystallographic structure of 
. Then by using Equations 

(3),(5) and Theorem 5 first Zagreb coindex is 

computed as below:

  

 
 

 
 

Now, by using Equations (4),(6) and Theorem 5 second Zagreb coindex is computed as below:  
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Fig. 8 – Comparison of indices of 34 2 [ ]G P m BC s,t,n≅  for fix t = 10: in (a) first Zagreb index  M1(G) and first Zagreb coindex 

1 ( )M G are compared. The blue and cyan colors represents  M1(G) and 1 ( )M G , respectively. Its easy to see that in the given 

domain 1 ( )M G  is more dominating. In (b) second Zagreb index  M2(G) and second Zagreb coindex 2 ( )M G  are compared. The red 

and gold colors represents  M2(G) and 2 ( )M G , respectively. Its easy to see that in the given domain 2 ( )M G  is more dominating. 

over the values of 2 ( )M G  are largest and the values of  M1(G) are smallest. 
 

The Table 6 shows the edge partition of the 
chemical graph ,  
based on the degree sum of end vertices of each 
edge. The next Theorem shows the exact value of 

Sanskruti index of , 
.  

 
 

Table  6 

Edge partition of 34 2 [ ]P m BC s,t,n  based on degree sum of end vertices of each edge 

(Sp, Sq) Frequency  
 (7,3) 8 
 (11,4) 2(s + t – 4)  
 (7,6) 8 
 (8,6) 4(s + t) – 16 
 (9,6) 8(n – 1)  
 (12,8) 4(s – 1)(t – 1)  
 (10,9) 8(n – 1)  
 (10,10) 4(n – 1)(t + s – 1)   
 (12,7) 8n 
 (14,8) 2n(s + t – 4) 
 (15,10) 2(n – 1)(s + t – 2)  
 (14,11) 8 
 (15,11) 4(s + t –4)  
 (15,12) 2(s + t –4)  
 (16,12) 4(t – 2)(s – 2)  
 (14,15) 8(n – 1)  
 (15,15) 4(n – 1)(s + t – 4)  
 (15,16) 4(n – 1)(s + t – 4)  
 (16,16) 8snt – 14sn – 8st – 14nt + 14s + 28n + 14t – 28  
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Theorem 5.3. Consider the graph 
 with , then its 

Sanskruti index  is equal to  

 
 

  

  

  
  

Proof. Let   be the crystallographic structure 
of  . Then by using Table 4 and 

equation (7) the Sanskruti index  is computed 
as follows.  

 
  

  

  

  
  

  

  

  

  

  
  

  

  

  

  
   

 
CONCLUSIONS 

In this paper, we have studied and computed 
some degree based topological indices for the 
chemical graph of the crystal structure of titanium 
difluoride , crystallographic structure of 
cuprite  and Boron-Carbon crystal structure 
of . The exact results have been 
computed of the first and second Zagreb indices, 
first and second Zagreb coindices and Sanskruti 
index for ,  and . 

The graphical representations of Zagreb indices 
of  and  are depicted 

in Figure 3 and Figure 5 for certain values of 
 and fix . By varying the value of  the 

Zagreb indices behaves differently. The graphical 
representations of Zagreb indices of 

 are depicted in Figure 5 for 
certain values of  and fix . By varying the value 
of  the Zagreb indices behaves differently. 
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