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Graph theory plays an important role in modeling and designing
any chemical structure or network. The molecular topological

descriptors are the numerical invariants of a molecular graph and

are very useful for predicting their bioactivity. In this paper, we
have studied the chemical graph of crystal structure of titanium

difluoride TiF, crystallographic structure of cuprite Cu,O and

Boron-Carbon crystal structure of P4m2BC,[s,t,n]. We have

discussed and computed exact results for degree based
topological indices namely Zagreb indices, Zagreb coindices and
Sanskruti index.

INTRODUCTION

Graph theory is a standout amongst the most
extraordinary and one of a kind branch of
mathematics by which the showing of any structure is
made possible. As of late, it achieves much
consideration among scientists on account of its
extensive variety of utilizations in Computer science,
electrical systems (network), interconnected systems
(network), biological networks, and in chemistry, and
so forth. The chemical graph theory (CGT) is the
quickly developing zone among scientists. It helps in
comprehension about the basic properties of a
molecular graph. There are a considerable measure of
molecular compounds, which have assortment of
utilizations in the fields of business, commercial,
industrial, pharmaceutical chemistry, in every day life
and in research facility.

" Corresponding author: kamransiddiqui75@gmail.com

A relationship exists between molecular
compounds and their atomic structures. The
control and examination of molecular compounds
data is made possible utilizing molecular
descriptors. Chemical graph theory is a branch of
mathematical chemistry in which apparatuses of
graph theory are applied to model the chemical
phenomenon  mathematically.  Likewise, it
identifies with the nontrivial uses of graph theory
for solving molecular problems. This theory
contributes a noticeable part in the field of
chemical sciences.

A new subject namely Chem-informatics which
is a combination of chemistry, mathematics and
information science helps to analyzes (OSAR) and
(OSPR) connections that are used to predict the
bioactivity and physiochemical properties of
chemical compounds. A topological index is a
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numerical esteem that is processed mathematically
from the molecular graph. It is related with
chemical constitution demonstrating for correlation
of chemical structure with numerous physical,
chemical properties and biological activities, see
details.""

For a given ¢ = (¥, E'} graph where V¥ to be
the vertex set and E to be the edge set of (. The
degree d, of p is the quantity of edges of G
incident with p. The length of a most limited path
in a graph & is a distance dl{ 7, 4} amongst  and
g represented by a polynomial, a numerical value
or by matrix form. There are sure sorts of
topological indices primarily eccentric based,
degree based and distance based indices etc. In this
paper, we have dealt with degree based topological
indices.

The Zagreb indices were conceived in 1972 by
Gutman and Trinajestic,'"'* they are characterized
as:

Ml[G] = E'pqEE(G] [d*p + dc) (1)
M,(G) = ques(sj l::d:'.t: E dr__‘) (2)

In 2008, Dosli¢ put forward the first Zagreb
coindex and second Zagreb coindex, defined as®

E = EEG:' = Zpqesre) [dp T dg] )

M, =M,(G) = EmrﬂiEIfol d‘ﬂ A~ dr: )

In 2016, 1. Gutman et al.” proves the following
Theorems:

Let & be a graph with |*{G)| vertices and
|E7 )| edges. Then
M,(G) = 2|E(G)|(|V(G) — 1) — M,(G).  (5)

Let G be a graph with |¥{G)| vertices and
|E7 G| edges. Then

P - 1

M,(G) = 2|E(G)|* — - M(G) — M,(G) (6)

In 2016, S. M. Hosamani'* introduced the
Sanskruti index 5{ &) for a molecular graph &,

defined as:
_ Sp*Sg -3
S(G‘J - Efv:quR(l‘T:l (%_'_Sﬂ_zjl (7)

For further study and research about the
topological indices see."®!*16:2128

Ly

Main results

In this section, additive topological indices
mainly first and second zegreb indices, first and
second zegreb coindices and Sanskruti index of
Cu, O[m,n, t], TiF, [m, m, t] and
P4mZRBC,[s,t,n] are computed. Moreover, the
exact values are derived for these indices of the
chemical graphs Cu, @[ 1, t], Til5[m, mt]

and P4m2 8045, t 1.

Crystallographic structure of Cu,0

Among different transition metal oxides, C'tt,
has pulled in extensive consideration as of late
attributable to its recognized properties and non-
toxic nature, minimal effort, plenitude, and basic
creation process. These days, the promising uses of
Cu.( chiefly concentrate on chemical sensors,
solar oriented cells, photocatalysis, lithium-particle
batteries and catalysis. The chemical graph of
Crystallographic structure of Cu,{ portrayed in
Figure 1 and Figure 2, for more data about this
structure see.”*' Let G 2 Cu,[m,n, t] be the
chemical graph of L'ut,(} with m > n unit cells in
the plane and ¢ layers. We develop this graph first
by taking i > m units in the mm —plane and after
that leveling up in t layers. The quantity of
vertices and edges of (u,3[m o, t] are
(m+ 1Nin+ 1(t+ 1)+ Smnt and  Smnt,
respectively.

In Cu,0[m,nt] the number zero degree
vertices is %, the number of one degree vertices is
4m + 4+ 4t — &, the number of two degree
vertices is dwmrt + Zmn + 2mt + Znt — 4dn —
—dm — 4t + & and the number of four degree
vertices is anmmt —mm —nt —mi +n+ m+ L

In the next Theorem, we have computed the
exact result of first and second Zagreb index for
the chemical graph Cu,0 [m,n,t].

Theorem 3.1. Consider the graph of
G = Cu,0[mn t]with m, n,t =1, then its first
and second Zagreb index is equal to,

M(G) — 18mnt — Smm — St — S8t + br 4+ In + At (8)

M.(G) = &d4mmt — 1émn — lemr — _snr + m+ 8n 4+ 5t )
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Fig. 1 — Crystallographic structure of Cu,0. (a) In lattice of Cu,O the structural characteristics of the atoms of Cu and O. The
lattice of Cu1,0 is formed by interpenetrating the lattices of Cu and O into each other. (b) Unit cell of Cu,O, where copper and

oxygen atoms are shown in small blue and in large red spheres. In the lattice of Ct1,0, every Cu atom is connected with two O
atoms, and every O atom is connected with four Cu atoms.

()

Fig. 2 — Crystallographic structure of Cu,0[3,2,3].

Table 1
Degree based partition of edges of Cu,0 [m,n,f], of end vertices of each edge
(dp, dy) Frequency
(1,2) dn+4m+4t-8
2,2) 4nm + 4nt +4mt —8n— 8m — 8t + 12
24 42nmt—nm—nt—mt +n+m+t-1)
Proof. Let &z be the crystallographic structure of computed as below:

Cu,0[m,n,t]. The first Zagreb index is

MG = z (d, +d,)

pgELE)
MiGi={4m+ dn + 4t — &)1+ 27+ (4mn + dmt + 4nt — 8m —8n — 8t + 127(2 + 2)

+(&mnt—dmn—4dmt —4dnt +4m+4dn+ 4t —43(2+4)
M,(G) = 48mnt — Smn — 8mt — 8nt + 4m + 4n + 4t

By using Table 1 and Equation (1) the second Zagreb index are computed as below:

M:Z::Gj = E*pqEE(G] [dﬂdq:
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M,(G)=(dm+dn+ 4t —8) (1 22+ (drmn + dmt + dnt — B — Bn — 8t 4+ 1232 27
+(&mnt —4mn —dmt —4nt+4m +4dn+ 4t —4)(2 X 4)
= &dmnt — 1émn — lémt — lent + Sm+ Sn 4+ 8t

The first and second Zagreb coindices for the Theorem 3.2. Consider the graph of
chemical graph Cut, @[, 1, t] computed are in G2 Cu,0mmnt] with m,nmt =1, then its
the next Theorem. first and second Zagreb coindices are equal to,

MG =80mZn?t? + 16mnt(m + 1(n+ 1)(t+ 1) — 6dmnt + Smn + Smt
+&nt — 4m — 4n — 4¢

M,(C) = 128m2n?t?  SSmmt | 20mwr | 20mt | 200t 1Om  10n 10t

Proof. Let G be the crystallographic structure of and Theorem 1 first Zagreb coindex is computed as
Cu, @[, r, t]. Then by using Equations (3),(5) below:

M,(G = Z (d, +d,)
L pgEE(F)
M(G)=2|E(G|(|V(G)| — 1) — M,(G)
=2(8mnt)i((m+ Lin+ 1)(t+ 1)+ Smnt — 1)
—(48mnt — Smn — Smt — Snt + dm+ 4n + 4t)

=somn’t? + 16mne(m + 1)(n+ 1(t+ 1) — édmt + Smn + Smit
+8nt — 4m — 4n — 4L

Now, by using Equations (4),(6) and Theorem 1 second Zagreb coindex is computed as below:
M,(G) = Zwa&f:(sj (dudy )
1
= 21B(6)F —2M,(6) — M,(6)

M,(G) = 2(8mmnt)? — S (48mnt — Smn — Smt — Snt + dm + dn + 4t

—(Edmnt — 16mre — 16mt — 1ént + 8m+ Sn+ &1
= 128m°n°t° — 88mnt + 20mn + 20mt + 20nt — 10m — 10n — 10t

6. x 1[}”‘"<

5. % 10"
4.% 10!
3.% 10"
2. % 10"

1. % 10"

0=

40

50
(a) (b)
Fig. 3 — Comparison of indices of G = Cu,0O[m,n,t], for fix t = 10: in (a) first Zagreb index M,(G) and first Zagreb coindex

M, (G) are compared. The blue and cyan colors represents M;(G) and M, (G) , respectively. Its easy to see that in the given domain
M, (G) 1is more dominating. In (b) second Zagreb index M,(G) and second Zagreb coindex Mz(G) are compared. The red and
gold colors represents M,(G) and Mz(G) , respectively. Its easy to see that in the given domain M, (G) is more dominating. over

the values of Mz(G) are largest and the values of M;(G) are smallest.
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Table 2

Based on sum of degrees of neighborhood of end vertices of each edge the partition of edges of Cu,O [m,n,t], with m,n,t>2

(Sps So) Frequency
2,4 4m+4n+4t-8
(4,6) 4mn + 4mt + 4nt —8m — 8n — 8¢ + 12
(5,8) 4n+4m+4r—8
(6,8) 4mn + 4mt + 4nt —8m — 8n — 8¢ + 12
(8,8) 8mnt — 8mn — 8nt + 8m + 8n + 8t — 8

The Table 2 shows partition of edges of the
chemical graph Cut, @[, 1, t] depending on the
sum of degrees of the neighbouring vertices of end
vertices of each edge. The next Theorem shows the
exact value of Sanskruti index of C'tt, [, 11, t].

Theorem  3.3. Consider the  graph
G = Cu,0[mmnt] with m n,t = 2, then its
Sanskruti index §{ ) is equal to

S(Gj _ 2621ddwmant _ 137292mn _ 137292 mt _ 1372920t 118387 450960 11808746068
343 343 343 343 45 &533 4+5E5313
1189 TLRARm BRZ 370
45E5 33 456533

Proof. Let 7 be the crystallographic structure of

equation (7) the Sanskruti index S{{7) is computed

Cu,0[m,n, t]. Then by using Table 2 and as follows.
@)= Y (Eey
Bl () 5?: * 5
S(G) = (4m+ 4n + 4t — 3}{2+ - Ejﬂ + (dmn + dnt + dmt — Sm — Sn— 8t
+ 1270 j3+[4m+4-n+ 4t—8j{5><—8j3
4+ & 5+ E—d

+(4mn + 4nt + dmt —Sm — Sn — St + 12]{

]5 + (&mnt — Smn — Smt — Snt + Sm +

gn+ &t — 8}(H+H Ik
5(6) = 262 14dmnt  137292mn 137292Zmt 137292nt  118974696n
343 34 343 343 456533
118974696t 118974696m 55213740

456533

Crystal Structure of Titanium Difluoride

Titanium Difluoride is a water insoluble
Titanium source for use in oxygen-sensitive
applications, for example, metal production.

Fluoride compounds have various applications in
current advances and science, from oil refining and
drawing to engineered organic chemistry and the
making of pharmaceuticals.

The chemical graph of crystal structure of
titanium difluoride T'iF, [rr, 7, t] is described in

Figure 4, for more details see>'® Let

456533

456533

G 2 T1F, [m, n. t] be the chemical graph of T'iF,
with 12 1t unit cells in the plane and t layers.
We construct this graph first by taking m x n
unites in the #z —plane and then storing it up in t
layers. The number of vertices and edges of
TiF, [m,mt] are
lamnt +amn+ amt+ant+m+nt+t+1
and I Zwmt, respectively.

In TiF, [, 1, t] the number of one degree
vertices is &, the number of two degree vertices is
4m + dn+ 4r — 12, the number of four degree
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vertices is  Smnt + 4mn + dmt + Ant — 1n — vertices is dmnt — 2(mn + mt + nt) + m.
—4m — 4t + & and the number of eight degree

N AN N

« w wf »

, \ >
A K X e

¢ \ > o x x » >
VXD NN WV WV

(a) (b)

Fig. 4 — Crystal Structure Titanium Difluoride TiF,/m,n,t/, (a) represents unit cell of of TiF,/m,n,t], with Tiatoms in red and F’
atoms in green (b) crystal structure of 7iF,[4,1,2].

Table 3
Degree based partition of edges of TiF,/m,n,t]/, of end vertices of each edge
(dy,d) Frequency
(1,4) 8
(2,4) 8(m+n+1-3)
(4,4) 16(mn + mt + nt) — 16(m + n+¢) + 24
(4,8) 32mnt — 16(mt + mn + nt) — 8
The exact result of the first and second Zagreb Theorem  4.1.  Consider the  graph
index for the chemical graph TiF,[m,n, t] is G 2 TWF, [m,m, t] with m,m, £ = 1, then its first
computed in the following theorem. and second Zagreb index is equal to,

MiG)y=58[48mnt —S(mn+mt +nt) +2{m+n+¢t) —1],
M,(G) = 32[32mnt —&(mn+ mt+rt )+ 2(m+n+t) — 1]

Proof. Let & %= TiF,[m,n, t] be the crystal Table 3 and the equation (1) the first Zagreb index
structure of titanium difluoride. Then by using is computed as below:

Ml':[;j = E‘pqEE(G] I:d';: + dqj
MiG)=(8)1+4)+ (8m+sn+e8t— 242+ 41+ (1e(mn+mt +nt) —1e(m+n+
)+ 248+ (32mnt — 16{mn+ mt + nt 1+ B(m+n+ ) — 814+ 8)
M,(G)=384mmnt —cdmn —cdmt —6dnt + lem+ Llén+ 16t — 38
Now, by using Table 3 and the equation (2) the second Zagreb index is computed as below:
MZ:G:I = E*pﬁ'EEfG] [d'.udqj

MG =(8)1x4)+ (Bm+ En+ 8- 242X+ (1e(mnd+ mt+nt) —16(m+n+
i+ 2414 =<4+ (GE2mnt —le(mntmt+nt)+8(m+n+t)—8)(¢ X8



Topological properties 417

M,(G) = 1024mnt — 256mn —256mt — 25ent + £4m + &4m + 64t — 32

The first and second Zagreb coindices for the Theorem 4.2. Consider the graph of
chemical graph T'iF, [m, n, t] computed are in the G 2 TWF, [m, n. t] with m,m, t > 1, then its first
next Theorem. and second Zagreb coindices are equal to,

M,(G)=64mnt(lzmnt + 2mn + 2mt + 2nt + m+ n+ £
—IZ81mnt + &dmn + slmt + sdnt —1esm — 1én— 158 4+ &,

M,(G) = 2048mnt? — 1216mmnt + 288mn + 288mE + 288nt — 72m — 72n — 72t + 36

Proof. Let G be the crystallographic structure of and Theorem 3 first Zagreb coindex is computed as
TiF, [m.m t]. Then by using Equations (3),(5) below:

M,(6) =E‘HI'-TEE(G] Ldy + dg)

M (G) = 2|E(GI|[|V{G)| — 1] — M,(G)
=a(idmnt)limmt+amnt+imt+ant+m+nt++ 1-—1)
—(384mnt — Cdmn —6dmt —ednt + lem+ 1én + 1ot — &)
=édmnt(limnt + 2mn+ 2mt + 2nt+m+n+t)

—dd4mnl + s4mn + c4mb + &4nl —lém — 1én— 160+ &,

Now, by using Equations (4),(6) and Theorem 3 second Zagreb coindex is computed as below:
My(G) = Lpqesey (dudy)
— 1
M, G) = 2|E(G)| - 7M,(6) — My(G)

1
= 2(32mnt)? — 5[384mnt — &dmn — Gdmt — s4nt + 1lem + len+ let — &)

—(1024mmt — 255mm — 256mt — 2561t + £4m 4+ Edn + A4t — 327
= 2048m n’t? — 1216mnt + 288mn + 288mt + 288nt — 72m— 72n — 72t + 36

50
)20 30 40
Fig. 5 — Comparison of indices of G = TiF,[m,n,t] for fix t = 10: in (a) first Zagreb index M;(G) and first Zagreb coindex
M, (G) are compared. The blue and cyan colors represents M;(G) and M, (G) , respectively. Its easy to see that in the given domain
M, (G) is more dominating. In (b) second Zagreb index M,(G) and second Zagreb coindex Mz(G) are compared. The red and

gold colors represents M,(G) and Mz(G) , respectively. Its easy to see that in the given domain M, (G) is more dominating. over

the values of M, (G) are largest and the values of M|(G) are smallest.
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Table 4
Edge partition of TiF;/m,n,t]/, m,n,s > 2 based on degree sum of end vertices of each edge
(Sps So) Frequency
4,13) 8
(8, 18) 8m+n+1t-3)
(13,16) 16
(16, 18) 16(mn+mt+nt)—16(m+n+1¢)+8
(16, 24) 32mnt — 16(mn + mt + nt) + 8
(18, 32) dm+n+t-2)

The Table 4 shows the edge partition of the
chemical graph TiF, [, n, t], m,n 5 = 2 based
on the degree sum of end vertices of each edge.
The next Theorem shows the exact value of
Sanskruti index of TiF, [m, 1. t], m.m 5 = 2.

Theorem  4.3. Consider the  graph
G & TWF, [mmt] with m,mt =2, then its
Sanskruti index 5{ G is equal to

- 240241 A 324278137 4R TAENS dud 11374R710R . i
MG)=—— e nt — mt + 2585%m + 2888n+
G209 5859 5859 =859
1272020287 02&0
3888t —

16875712125

Proof. Let (7 be the crystallographic structure
of TiF,[m,n,t] . Then by using Table 4 and

- =B, .
S(6) = Epgesor (5oa 3"

equation (7) the Sanskruti index 5( (7] is computed
as follows.

414 L
5(6) = ':Sj{mja +3m+tn+t— Sj{mjﬁ
+[161E%j3+ (1e{mm+ mt+ nt) — le(m+n+t) + 3)(_1:;*811 3

+(3dmnt — le{mn+ mt + nt) + &)(

_ 22482416 3324283z

Tl —
ES59 ES59
18723868257 03869 6
+3888L — ’
163765712125

Boron-Carbon crystal structure
of P4m2BC,|s,t,n|

The vast majority of Boron and Carbon systems
denoted as B-C binary systems show high
imperviousness to oxidation furthermore, response
with ferrous metals, contrasted and the carbon-
based materials.”'>'® Boron carbide B,C is a hard
crystal that can be created at surrounding pressure,
8,17 while B-doped diamond demonstrates a
superconducting progress temperature of 4K.° It is
of extraordinary enthusiasm for diamond-like BC,
systems to seek after predominant superhard
crystals that are not just thermally and chemically
more stable(steady) than diamond, yet in addition
have intriguing electrical properties.’**

Liu ef al." investigated the crystal structures
with particle swarm optimization (PSO) algorithm

16% 74 g . e 18W32 g
1|5+24-—2J tolmintt dJL1=3+32—2J
6T G5 b 1132462 H8
—nl ————mi + 3588m + 388En
559 E559

consolidated with first-principles  structural
optimizations. Three metallic setups, to be specific
Pmma —a, Pmma — b and P4m2 stages were
revealed. With the bond resistance demonstrate,
the Vickers hardness for all three stages is bigger
than &0 GPa, demonstrating the superhard nature
of these polymorphs, which ought to be tested
experimentally. Furthermore, all stages have a
superconductive transition at low temperature.

Let G = P4m2ZB(C,[5 t, n] be the chemical
graph of Pdm2 B, with 5 t unit cells in the
plane and ft layers. We construct this graph first by
taking 5 t unites in the st —plane and then
storing it up in 1t layers. Some description of the
construction are given in Figure 6 and Figure 7.
The number of vertices and edges of

P4mZBCq[s,t,n] are  (s+ 13(t+ 1)+
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+ nf2s+ 1)(2t+ 1) and n{&st + 25 + 28).
In P4mzB Cq[5,t, ] the number of one degree
vertices is Z(5 + & + 27, the number of two degree
vertices is Z(5t + Zm — 3], the number of three
degree  vertices is Zn(s+ t)+2(n—1)
(5 +t — 27and the number of four degree vertices
is dsnt—asm—st—dtn+n+s5+1¢i The
edges of P4m2zBC 5|5, t, 1| are partitioned into
seven sets, say K, E,, E;, E,, E5, E, and E..
The set E4 contains & edges pg, where ¢, = 3 and
d, = 1. The set E, contains Z(5+ t) — 4 edges
P, where g, = 4 and e, = 1. The set E, contains

(&)

4(t + 5 + in —4) edges pg, where d, = 2 and
d, = 2. The set E, contains 4(5— 13(t— 1]
edges pg, where d,, = 4 and 4 = 2. The set Fg
contains 4{n — 1)(t+ 5— 27 edges pg, where
tly, — tg — 3. The set E.
anis+ ) +2in—1(s+t—27 edges pg,
where d, = 4 and @, = 3. The set E; contains
gsnt —ésn— 45t —ent+ 45+ dn+ 4t — 4
edges pg, where d, = d, = 4. The edge partition
is shown in Table 5 of P4m2BC a5, &, ] with
stn=1.

contains

n=3

n=1

()

Fig. 6 — Crystal structures of P4m 2BC,[s,t,n], (a) chemical graph of unit cell,

(b) PZmZBC3[1,1,3] with s = ¢=1 and n = 3 layers. Carbon atom are black Boron atoms are brown.

Fig. 7 — Crystal structures of p4m2BC,[4,2,1].

Table 5

Degree based partition of edges of P4m2BC,[s,t,n], of end vertices of each edge

(dy,d) Frequency
3,1 8
4,1) 2(s+1)—4
(3,2) 4(t+s+2n—4)
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Table 5 (continued)
(4,2) 4s-Di-1)
(3.3) 4n—1)t+s—2)
4.,3) 2n(s+)+2(n—1)(s+t-2)
(4,4) 8snt — 6sn —4st —6nt +4s +4n+ 4t —4
In the following Theorems we have computed Theorem 5.1. Consider the  graph
the first and second Zagreb indices, the first and G 2 Pim2BC.[s t,n), for 5,&n = 1, then its

second Zagreb coindices of the chemical graph

- first and second Zagreb indices are equal to
P4mz2BO [5,t nl

M,(G) = &4snt — 10sn — 85t — 10nt — 4n
M,(G) = 120snt — 3Csn — 325t — Zént + 45 — On+ 4t

Proof. Let & be the graph of indices are computed as below:

P4m2BC,[5,t n]. Then by using Table 5 and the
equations (1),(2) the first and second Zagreb

Ml:G:‘ = Em}EE(C) [dw + dq:"

MG =(8)3+1)+ 25+ 2t — 44+ DN+t +5+2n -3+ 2) + 45— 1t —
14+ 2]
+4in—1t+5—2)(3+ 3 +2(n—-1)t+5—- 294+ 3)
+(8snt —6sn — 45t —ent + 45 +dn+ 4t — 474 + 4)
M{(G) = é4snr — 10sn — 858 — 10nt — 4n

My G) = Lpgeney [ty ) = F1(6)

MG =(8)3x 1)+ 25+ 2t —4)4 X 1)+ 4{t+ 5+ 2n— 43 X 2}
+4F -1t = 14X )+ dn -1t +5— 23 X3+ dn—-1)t+ 5
=231 2) + (&mnt — s — A5t — Ent + 45 + dn + At — (44
M,(G) = 128snt — 36sm — 325t —26nt + 45— 8n+ 4t

Theorem 5.2. Consider the graph of first and second Zagreb coindices are equal to,
G = PemZBEC s, | withm n, £ = ., then its

M (6) = 2n(8st+ 25 + 269((5+ 1)t + 1)+ n{2Zs5+ 1)(2t+ 1) — 1) — 64snt — 10sn +
10mt + 105t + 4n.

M,(G) — 204&m’n’ (7 — 12 16menl + 288 + 288ml + 2880l — 72m — 72n — 720 + 36

Proof. Let & be the crystallographic structure of computed as below:

PEmEEE'g[S.t n]. Then by using Equations
(3),(5) and Theorem 5 first Zagreb coindex is

ﬂ[ﬁj = Et:aEE(G) [dﬂ T daJ
Mi(G)=Z|E(G)(IV(G) — 1) — M, G)
=ZnEst + a5+ 205+ L)+ 1)+ nias+ 1)iar+ 11— 1)
—(&dsmt — 10sn — &5t — 10t — 4m)
=dn(8st+ 25+ 28((s+ Dt + 1+ 25+ (2t 4+ 1) — 1) — Edsnt — 10sn + 10nt +
105t + 4n.
Now, by using Equations (4),(6) and Theorem 5 second Zagreb coindex is computed as below:
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My(G) = Lpgese) (dadq)

na s )

M [G) = 2|B(6)| - 2M,(6) — My(G)

= 2(n(8st + 25+ 2£))2 — Z(64snt — 10sn — 85t — 10nt — 4n)

—(1i8snt — 3&sm — 3250 — 36Nt + 45 — &+ 41)
=2n’(8st 4+ 25+ 2t)° — 160smt + 3lsn+ 4int + 375t + 10n — 45 — 4t

(a) (b)
Fig. 8 — Comparison of indices of G = Pé_lm2BC3[S,t,n] for fix = 10: in (a) first Zagreb index M,(G) and first Zagreb coindex

M, (G) are compared. The blue and cyan colors represents M;(G) and M, (G) , respectively. Its easy to see that in the given
domain M, (G) is more dominating. In (b) second Zagreb index M,(G) and second Zagreb coindex Mz(G) are compared. The red
and gold colors represents M,(G) and Mz(G) , respectively. Its easy to see that in the given domain Mz(G) is more dominating.

over the values of Mz(G) are largest and the values of M;(G) are smallest.

The Table 6 shows the edge partition of the Sanskruti index of  Pima BC,[5,5 1]

chemical graph P4m2 Bl [s,tn], s,t, n = 2 stn=z.
based on the degree sum of end vertices of each
edge. The next Theorem shows the exact value of

Table 6

Edge partition of PZmZBQ[s,t,n] based on degree sum of end vertices of each edge

(Sp, So) Frequency
(7,3) 8
(11,4) 2s+t—4)
(7,6) 8
(8,6) 4(s+1)-16
9,6) 8(n—1)
(12,8) 4s-1D)(t-1)
(10,9) 8(m-1)
(10,10) dn—-D(+s-1)
(12,7) 8n
(14,8) 2n(s +t—4)
(15,10) 2(n—1)(s +t-2)
(14,11) 8
(15,11) 4(s +t-4)
(15,12) 2(s +t-4)
(16,12) 4(t-2)(s—-2)
(14,15) 8(m—-1)
(15,15) dn—1)(s+t—4)
(15,16) dn-1)(s+t—-4)
(16,16) 8snt — 14sn — 8st — 14nt + 14s + 28n + 141 — 28




422 Zheng-Qing Chu et al.
Theorem 5.3. Consider  the graph Sanskruti index S{ ) is equal to
G ¥ TiF,[mmnt] with m,mt =2, then its
2343 6215 6632572 32 1051575552335°7 1051575952335°7 FL LR
5(G) = 5+ n(s+t—4)
953590553 625 949 104000 949 104000
29360128 29360128 16777216 16'.'-".'-".'-’216 t_l_:t-uss(:as- 47(r—1)
3375 3375 3375 3375 27
406605 3542012 5 (4n—4 ) [a+E —d) + FATEHOOB(2n—2 Watt—21  SE4TA6(4—8)(s—2
(390297362112 12167 (2197

EFO9E ST DEAZEEE62T 35038533
203 22523102243 03302300

Proof. Let & be the crystallographic structure
of TiF,[m,n,¢t] . Then by using Table 4 and

[: EEXFE "]3
BIEE(L) By 5, — 2-
T

S(E)=X

S(6) = (GRS + 2+ 1= HELD +

+( A5+ tj—léj{ j3+3{n

equation (7) the Sanskruti index () is computed
as follows.

114 TG

()

axE 12«2

D2+ 45 — 1) (t— 1) (222

B+6—7
18 110 12x7
+8(n— D505 2]3 HAm =)0+ 5 - D zja +eann zja
143 15%10 14x11
+an(s +t — 45 zja tan— L+t - 25 zja + 3 zja

15 x11
+4(s+t - 4

14 %15
a S ewern

Faln— )5+ t — 4) (22

k|
16+16- 23'

+(&mmt — Ldsm — 85t — Lint + 145 + 28n 4+ 144 —28)(

_ 23496215653227232

1515255523367

1512 1612

) tals+ t— (e zja + 4t —2)(5— 2D n o :2ja
}3+-’-1{ﬂ—1:||:5'+1‘— a4

1515 %
15+15—2

16 16 '
16+16-2

1051525552336 7 43904

253550553625
293e0123 29360123

Sapd | ek O 30
18777216

ns+t—4)
wss(w +(z—1)

5+
Sapd | Qep 3 00
16777216

3375 3375

3375

t +
a7
S5 TIE(4—5) (s—2

3375

4966953542012 5 (4 —4 I (a+E—1) +

39029732112
GFA0G5T 5226832562335 978537

203325231 03243 03032300

CONCLUSIONS

In this paper, we have studied and computed
some degree based topological indices for the
chemical graph of the crystal structure of titanium
difluoride T'iF,,
cuprite {0 and Boron-Carbon crystal structure
of PAmMZBC .[5,t, 1]. The exact results have been
computed of the first and second Zagreb indices,
first and second Zagreb coindices and Sanskruti
index for TiF,, Cu, & and Pdmz BC,[5,t,n|

The graphical representations of Zagreb indices
of Cu,[m,r, t] and TiF,[m,n,t are depicted

crystallographic structure of

FATERR0Er—2 Mate—2] +

12167 21497

in Figure 3 and Figure 5 for certain values of
(m, n) and fix t. By varying the value of rn, 1t the
Zagreb indices behaves differently. The graphical
representations of Zagreb indices of

P4m2BC,|s,t,n] arc depicted in Figure 5 for
certain values of 5, t and fix 7. By varying the value
of =, t the Zagreb indices behaves differently.
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