

Rev. Roum. Chim., **2020**, *65*(7-8), 685-691 DOI: 10.33224/rrch.2020.65.7-8.05

Dedicated to Professor Cristian Silvestru on the occasion of his 65th anniversary

MOLECULAR STRUCTURE AND SUPRAMOLECULAR ASSOCIATION OF TRICHLORO-2-THIENYL-DIPHENYLMETHYLSILANE

Albert SORAN^{*} and Ionel HAIDUC^{*}

Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, ROMANIA

Received October 21, 2019

A heteroleptic organosilicon compound containing a thienyl group synthesized almost fifty years ago and stored ever since under air has seen the light of day once again and has been fully investigated by single crystal X-ray diffraction, multinuclear NMR in solution and mass spectrometry. Analyses have confirmed the identity of trichloro-2-thienyl-diphenylmethylsilane. The molecular structure determined by X-ray diffraction has revealed an intricate supramolecular assembly in the solid-state involving Cl····Cl, C–H····Cl, C–H····Cl, S····T and π ····T interactions.

INTRODUCTION

The halogen-metal exchange between polychloroaromatic compounds and organolithium reagents affords organolithium derivatives of perhalogenated heterocycles and is a convenient method for the preparation of such intermediates for further reactions.¹

The title compound **1** has been prepared in 1970 by derivatization of trichloro-2-thienyllithium, obtained by halogen-metal exchange in a reaction between tetrachlorothiophene and *tert*-butyllithium, with diphenylmethylchlorosilane (Scheme 1).²

Scheme 1 – Synthetic pathway to compound 1.

^{*} Corresponding authors: asoran@chem.ubbcluj.ro or ihaiduc@acad.ro

It was assumed that the lithiation occurs at position 2 of the thiophene ring, but the ultimate confirmation had to wait an X-ray diffraction analysis, which is reported here. The title compound 1 is stable and it was stored for 48 years, without any precautions, in contact with open air.

The X-ray diffraction analysis established the molecular structure of the title compound and surprisingly demonstrated the formation of a dimer through Cl...Cl halogen bond association, which is further self-assembled into an intricate supramolecular structure. This seems to add a new type of halogen-halogen bond association to the known types.³

A detailed NMR spectroscopic analysis of the title compound is also provided here and mass spectroscopy data are also given.

RESULTS AND DISCUSSION

Crystal structure determination

Single crystals of 1 were obtained by recrystallization from methanol. The crystals were mounted on MiTeGen microMounts cryoloops and data were collected on a Bruker D8 VENTURE diffractometer using Mo-K α radiation ($\lambda = 0.71073$ Å) from a I μ S 3.0 microfocus source with multilayer optics, at low temperature (100 K). Further details on the data collection and refinement methods can be found in Table 1 and the experimental section.

Compound	1			
Empirical formula	C ₁₇ H ₁₃ Cl ₃ SSi			
Formula weight	383.77			
Crystal size /mm	0.286 x 0.0.172 x 0.156			
Crystal habit	colorless block			
Wavelength (Å)	0.71073			
Temperature (K)	100.(2)			
Crystal system	Triclinic			
Space group	P-1			
a (Å)	9.4682(6)			
b (Å)	9.7595(7)			
c (Å)	10.0348(7)			
α (°)	71.604(2)			
β (°)	88.666(2)			
γ (°)	74.609(2)			
Volume (Å ³)	846.47(10)			
Ζ	2			
Density (calculated) $(g cm^{-1})$	1.506			
Absorption coefficient (mm ⁻¹)	0.728			
F(000)	392			
θ range for data collections (°)	2.58-28.29			
T _{max} / T _{min}	0.746 / 0.669			
Reflections collected	35770			
Independent reflections, $R_{\rm int}$	4194, 0.0219			
Completeness to $\theta = 28.29^{\circ}$	99.6 %			
Refinement method	Full-matrix least-squares on F^2			
Data / restraints / parameters	4194 / 0 / 203			
Goodness-of-fit on F^2	1.115			
Final <i>R</i> indicies $[I \ge 2\sigma(I)]$	$R_I = 0.0197$			
	$wR_2 = 0.0480$			
<i>R</i> indices (all data)	$R_I = 0.0219$			
	$wR_2 = 0.0502$			
Largest diff. peak and hole, eA	0.381, -0.216			
CCDC No.	1959727			

 Table 1

 Crystal data and structure refinement for compound 1

Fig. 1 – View of the asymmetric unit in the crystal of 1, shown with 50% probability ellipsoids.

Fig. 2 – Intermolecular associations through Cl····Cl contacts in the crystal of 1 (hydrogen atoms are omitted for clarity). (Symmetry equivalent atoms are given by –x, 1-y, -z).

Compound 1 crystallizes in the triclinic centrosymmetric space group with two molecules in the unit cell. The X-ray diffraction revealed that the asymmetric unit consists of only one molecule (Figure 1). The geometry around the silicon atom is tetrahedral as expected, with C-Si-C angles in the range of $106.9(1)-111.5(4)^{\circ}$ and C-Si bond lengths in the range of 1.86(1)-1.88(1) Å.

Weak Cl····Cl interactions with a *cis* arrangement lead to the formation of dimeric units (Figure 2).

In the crystal lattice further associations of the dimeric units through C–H····Cl (Figure 3), C–H···· π , S···· π and π ···· π interactions (Figure 4) results in a tridimensional supramolecular network.⁴⁻⁷

Fig. 3 – View along the *b* axis of the unit cell showing C–H···Cl contacts (orange dotted lines) and Cl···Cl contacts in the crystal (green dotted lines) of 1 (hydrogen atoms not involved in interactions are omitted for clarity).

Fig. 4 – View along the *b* axis of the unit cell showing intermolecular associations through C(Ph)–H··· π contacts (blue dotted lines), S··· π contacts (yellow dotted lines) and π ··· π contacts (black dotted lines) in the crystal of **1** (hydrogen atoms not involved in interactions are omitted for clarity).

689	
-----	--

Intermolecular contacts for compound 1							
	β_{pln} $\beta_{$	H) a // Dpin Cgr d ₀					
$C \xrightarrow{\gamma} d_1 \\ H \xrightarrow{Cl} \text{ interactions}$							
C-H····Cl		d ₁ (Å)	γ (°)	D			
C8–H8·····Cl1 ^a		2.93	141.6	3.72(1)			
C15-H15·····Cl2 ^b		2.97	163.4	3.89(1)			
	C^{1}	interactions					
C-Cl····Cl-C		d (Å)	α (°)	β (°)			
C3-C11C12 ^c -C4 ^c		3.42(1)	132.2(1)	158.2(1)			
$C-H\cdots\pi$ interactions							
C–H…plane	lateral shift, $d_0(A)$	D _{pln} (Å)	α (°)	β_{pln} (°)			
C9–H9····C(12-17) ^a	0.04	2.73	135.2(2)	61.9(1)			
$\pi \cdots \pi$ interactions							
planeplane	-	d (Å)	-	β_{pln} (°)			
$C(2-5)S1\cdots C(2-5)S1^{a}$	-	3.50	-	0 within s.d.			
	$S \cdots \pi$ interactions	0					
S…plane	lateral shift, $d_0(Å)$	D _{pln} (Å)	-	β_{pln} (°)			
S1C(12-17) ^e	0.37	3.49	-	79.6(1)			

Symmetry equivalent atoms are given by: a) 1+x, y, z b) -x, 1-y, 1-z c) -x, 1-y, -z d) 1-x, 1-y, -z e) 1-x, 1-y, 1-z d) 1-x, 1-y, -z e) 1-x, 1-y, 1-z

Relevant information regarding the weak intermolecular contacts is given in Table 2.

Nuclear magnetic resonance spectra

The 1 H, 13 C and 29 Si NMR spectra of compound **1** were measured in CDCl₃ solution and the numeric data are given in the experimental part.

The ¹H NMR spectrum in chloroform-d₁ of the title compound shows the expected signals corresponding to the methyl and phenyl groups bonded to silicon, with an integral ratio of 3:4:4:2 for the methyl, *ortho, meta* and *para* hydrogen atoms respectively. Coupling between hydrogen atoms of the phenyl ring is also observed (Figure 5 and experimental data).

In the ¹³C NMR spectrum only eight of the nine expected signals were observed, regardless of the

spectral width (Figure 6). The missing resonance signal corresponds to one of the *ipso* carbon atom bonded to chlorine from the thiophene ring. The absence of this signal could be explained by a coincidence of frequency and thus obscurement by a stronger signal.

Heteronuclear ¹H-¹³C (HSQC, HMBC) correlation experiments were used to establish the identity of the signals in both the ¹H and ¹³C NMR spectra but did not help to identify the position of the missing signal nor for the correct assignment of the signals corresponding to other two *ipso* carbon atoms bonded to chlorine to the atoms. Only the *ipso* carbon atom from the thiophene ring bonded directly to silicon could be reliably attributed.

The ²⁹Si DEPT NMR spectrum shows one singlet signal as expected, at lower frequency and higher field compared to Me_4Si (Figure 7).

691

Mass spectral data

Mass spectrometry was used to investigate compound **1**. Thus, in the APCI+ spectra obtained using acetonitrile as carrying solvent, although the molecular peak was not observed several fragments resulting from the loss of organic groups Me, Ph or trichlorothienyl bonded to silicon could be identified.

EXPERIMENTAL

For structure solving and refinement of the X-ray structure the Bruker APEX3 software package was used.⁸ The structure was solved by dual methods (SHELXT-2014/5)⁹ and refined by full matrix least-squares procedures based on F^2 with all measured reflections (SHELXL-2018/3).¹⁰ The structure was refined with anisotropic thermal parameters for non-H atoms. Hydrogen atoms were placed in fixed, idealized positions and refined with a riding model and a mutual isotropic thermal parameter. The drawings were created with the Diamond program.¹¹ The supplementary crystallographic data for this paper can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data request/cif.

The NMR spectra were recorded at room temperature on a BRUKER AVANCE 400 spectrometer. The chemical shifts are reported in ppm relative to the residual peak of the solvent: CHCl₃ (δ 7.26 ppm) in the ¹H NMR spectrum and CDCl₃ (δ 77.16 ppm) in the ¹³C NMR spectrum, while for the ²⁹Si NMR spectrum Me₄Si was used as reference (δ 0 ppm).

The melting point was obtained using the Electrothermal 9200 digital apparatus and is uncorrected. For the mass spectrum the Thermo Scientific LTQ Orbitrap XL instrument was used.

m.p. (°C): 86.3-87.3

¹**H** NMR (400.13 MHz, CDCl₃) δ (ppm): 0.97 (s, 3H, Si-CH₃), 7.42 (td, 4H, *m*-C₆H₅, ³J_{HH} = 8 Hz, ⁴J_{HH} = 1.6 Hz), 7.48 (tt, 2H, *p*-C₆H₅, ³J_{HH} = 7.3 Hz, ⁴J_{HH} = 1.9 Hz), 7.56 (dd, 4H, *o*-C₆H₅₂, ³J_{HH} = 8 Hz, ⁴J_{HH} = 1.6 Hz).

¹³C NMR (101.61 MHz, CDCl₃) δ (ppm): -3.42 (s, Si-CH₃), 125.46 (s, *ipso*-C₄S), 128.24 (s, *ipso*-C₄S-Si), 128.29 (s, *m*-C₆H₅), 130.45 (s, *p*-C₆H₅), 131.13 (s, *ipso*-C₄S), 133.27 (s, *ipso*-C₆H₅), 135.20 (s, *o*-C₆H₅), the signal corresponding to one *ipso* carbon atom from the thiophene cycle was not observed.

²⁹Si NMR (79.49 MHz, CDCl₃) δ (ppm) -14.87 (s).

MS (APCI+, CH₃CN) m/z (abundance): 366.93 (100%) [M-Me]⁺, 330.96 [M-Me-Cl]⁺ (25%), 306.90 (5.1%) [M-Ph+2H]⁺ 199.06 (20.9%) [M-C₄Cl₃S+2H]⁺.

CONCLUSIONS

Halogen-metal exchange occurs in the reaction of tetrachlorothiophene with *tert*-butyllithium, leading to an organolithium derivative. Derivatization with diphenylmethychlorosilane affords an organosilicon compound which in the solid state is associated first into halogen bond dimers, which further self-assemble into an intricate supramolecular structure, as demonstrated by single crystal X-ray diffraction.

Acknowledgements. We thank the National Centre for Xray Diffraction (CNDRX) at Babeş-Bolyai University for providing access to X-ray diffraction facilities.

REFERENCES

- D. Ballard, T. Brennan, F.W.G. Fearon, K. Shiina, I. Haiduc and H. Gilman, *Pure Appl. Chem.*, **1969**, *19*, 449-472.
- 2. I. Haiduc and H. Gilman, *Rev. Roum. Chim.*, **1971**, *16*, 305-315.
- (a) G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati and G. Terraneo, *Chem. Rev.*, 2016, *116*, 2478–2601; (b) P. R. Varadwaj, A. Varadwaj and H. M. Marques, *Inorganics*, 2019, *7*, 40-63; (c) L. Mendez, G. Henriquez, S. Sirimulla and M. Narayan, *Molecules*, 2017, *22*, 1397-1412.
- G. R. Desiraju and T. Steiner, "The Weak Hydrogen Bond in Structural Chemistry and Biology", Oxford University Press: Oxford, United Kingdom, 1999.
- C. A. Hunter and J. K. M. Sanders, J. Am. Chem. Soc., 1990, 112, 5525-5534.
- 6. C. Janiak, J. Chem. Soc., Dalton Trans., 2000, 21, 3885-3896.
- V. R Hathwar, S. Mohana Roopan, R. Subashini, F. Nawaz Khan and T. N. Guru Row, *J. Chem. Sci.*, 2010, 122, 677-685.
- 8. Bruker (2012). *APEX3*, Bruker AXS Inc., Madison, Wisconsin, USA.
- 9. G. M. Sheldrick, Acta Crystallogr. A, 2015, 71, 3-8.
- 10. G. M. Sheldrick, Acta Crystallogr. C, 2015, 71, 3-8.
- H. Putz and K. Brandenburg, *DIAMOND Crystal and Molecular Structure Visualization*, Crystal Impact GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany, 2018.