Supporting Information for

Selective Hydration of Electron-Rich Aryl-Alkynes by a Schrock-type

Molybdenum Alkylidene Catalyst

by

Andreea Crișan, ^a Alexandra Pop, ^a Elena Bogdan, ^a Mihaela Matache, ^b Lidia Pop, ^a Anamaria Terec ^a Ion Grosu ^{a,*} and Niculina D. Hădade ^{a,*}

Table of contents

Figure S1. ¹ H-NMR (600 MHz, CDCl ₃) spectrum of compound 3	2
Figure S2. ¹³ C-NMR (100 MHz, CDCl ₃) spectrum of compound 3	2
Figure S3. ¹ H-NMR (600 MHz, CDCl ₃) spectrum of compound 4	3
Figure S4. ¹³ C NMR (150 MHz, CDCl ₃) spectrum of compound 4	3
Figure S5. ¹ H-NMR (600 MHz, CDCl ₃) spectrum of compound 5	4
Figure S6. ¹³ C NMR (150 MHz, CDCl ₃) spectrum of compound 5	4
Figure S7. ¹ H NMR (600 MHz, CDCl ₃) spectrum of compound 6	5
Figure S8. ¹³ C NMR (150 MHz, CDCl ₃) spectrum of compound 6	5
Figure S9. ¹ H NMR (600 MHz, CDCl ₃) spectrum of compound 7	6
Figure S10. ¹³ C NMR (150 MHz, CDCl ₃) spectrum of compound 7	6
Figure S11. ¹ H NMR (600 MHz, CDCl ₃) spectrum of compound 8	7
Figure S12. ¹³ C NMR (150 MHz, CDCl ₃) spectrum of compound 8	7
Figure S13. ¹ H NMR (600 MHz, CDCl ₃) spectrum of compound 9	8
Figure S14. ¹ H NMR (600 MHz, CDCl ₃) spectrum of compound 10	8
Figure S15. ¹ H NMR (600 MHz, CDCl ₃) spectrum of compound 11	9
Figure S16. ¹ H NMR (600 MHz, CDCl ₃) spectrum of compound 12	9
Figure S17. ¹³ C NMR (150 MHz, CDCl ₃) spectrum of compound 12	10
Figure S18. ¹ H NMR (600 MHz, CDCl ₃) spectrum of compound 13	10
Figure S19. ¹³ C NMR (150 MHz, CDCl ₃) spectrum of compound 13	11
Figure S20. ¹ H NMR (600 MHz, CDCl ₃) spectrum of compound 14	11
Figure S21. ¹³ C NMR (150 MHz, CDCl ₃) spectrum of compound 14	12
Figure S22. ¹ H NMR (600 MHz, CDCl ₃) spectrum of compound 15	12
Figure S23. ¹ H NMR (150 MHz, CDCl ₃) spectrum of compound 15	13
Table S1. Crystal data and structure refinement for mono-ketone 7	14

^{a.}Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Supramolecular Organic and Organometallic Chemistry Centre, 11 Arany Janos Str., RO-400028-Cluj-Napoca, Romania; email: nbogdan@chem.ubbcluj.ro, igrosu@chem.ubbcluj.ro

^{b.}University of Bucharest, Faculty of Chemistry; Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre

^bUniversity of Bucharest, Faculty of Chemistry; Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90-92 Panduri Street, RO-050663 Bucharest, Romania;

Figure S1. ¹H-NMR (600 MHz, CDCl₃) spectrum of compound **3**

Figure S2. ¹³C-NMR (100 MHz, CDCl₃) spectrum of compound **3**

Figure S3. ¹H-NMR (600 MHz, CDCl₃) spectrum of compound 4

Figure S4. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound **4**

Figure S5. ¹H-NMR (600 MHz, CDCl₃) spectrum of compound 5

Figure S6. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound **5**

Figure S7. ¹H NMR (600 MHz, CDCl₃) spectrum of compound **6**

Figure S8. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound **6**

Figure S9. ¹H NMR (600 MHz, CDCl₃) spectrum of compound 7

Figure S10. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound **7**

Figure S11. ¹H NMR (600 MHz, CDCl₃) spectrum of compound **8**

Figure S12. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound **8**

Figure S13. ¹H NMR (600 MHz, CDCl₃) spectrum of compound 9

Figure S14. ¹H NMR (600 MHz, CDCl₃) spectrum of compound **10**

Figure S15. ¹H NMR (600 MHz, CDCl₃) spectrum of compound **11**

Figure S16. ¹H NMR (600 MHz, CDCl₃) spectrum of compound **12**

Figure S17. 13 C NMR (150 MHz, CDCl₃) spectrum of compound 12

Figure S18. ¹H NMR (600 MHz, CDCl₃) spectrum of compound 13

Figure S19. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound **13**

Figure S20. ¹H NMR (600 MHz, CDCl₃) spectrum of compound **14**

Figure S21. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound **14**

Figure S22. ¹H NMR (600 MHz, CDCl₃) spectrum of compound **15**

Figure S23. ¹H NMR (150 MHz, CDCl₃) spectrum of compound **15**

Table S1. Crystal data and structure refinement for mono-ketone 7

Identification code shelx

Empirical formula $C_{19}H_{13}NO$ Formula weight 271.30Temperature 294(2) KWavelength 0.71073 ÅCrystal system Monoclinic

Space group P 21/c

Unit cell dimensions a = 13.0200(18) Å $a = 90^{\circ}$.

b = 8.4402(12) Å $b = 107.069(2)^{\circ}$.

c = 13.3130(19) Å $g = 90^{\circ}$.

Volume $1398.5(3) \text{ Å}^3$

Z 4

Density (calculated) 1.289 Mg/m³
Absorption coefficient 0.080 mm⁻¹

F(000) 568

Crystal size $0.390 \times 0.321 \times 0.220 \text{ mm}^3$

Theta range for data collection 1.636 to 24.994°.

Index ranges -15 <= h <= 15, -10 <= k <= 10, -15 <= l <= 15

Reflections collected 13048

Independent reflections 2464 [R(int) = 0.0751]

Completeness to theta = 24.994° 100.0 %

Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 2464 / 0 / 191

Goodness-of-fit on F^2 1.103

Final R indices [I>2sigma(I)] R1 = 0.0811, wR2 = 0.1837 R indices (all data) R1 = 0.1047, wR2 = 0.1957 Largest diff. peak and hole 0.455 and -0.211 e.Å $^{-3}$