NEW MIXED-VALENCE DISK-LIKE [Co ${ }_{7}$] CLUSTERS WITH AMINOALCOHOL LIGANDS**

Adrian Alexandru APOSTOL, ${ }^{\text {a,b }}$ Georgiana VASILE ${ }^{\text {a }}$, Teodora MOCANU, ${ }^{\text {a,c }}$ Catalin MAXIM, ${ }^{\text {a }}$ Violeta TUDOR ${ }^{\text {a, }{ }^{*}}$ and Marius ANDRUH ${ }^{\text {a, }}$,
${ }^{\text {a }}$ Inorganic Chemistry Department, Faculty of Chemistry, University of Bucharest, Dumbrava Roşie 23 Str., 020464-Bucharest, Roumania
${ }^{b}$ National Institute for Research and Development in Microtechnologies, Erou Iancu Nicolae 126A, 077193-Bucharest, Roumania
c "Ilie Murgulescu" Institute of Physical Chemistry, Splaiul Independenței 202, Bucharest, Roumania

Received March 2, 2020

Aerobic reactions of $\mathrm{Co}(\mathrm{AcO})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ with N -methyldiethanolamine ($\mathrm{m}-\mathrm{H}_{2} \mathrm{dea}$) or N -ethyldiethanolamine (e- $\mathrm{H}_{2} \mathrm{dea}$), in the presence of NaClO_{4}, afford two new compounds, $\left[\mathrm{Co}^{\mathrm{HI}}{ }_{4} \mathrm{Co}^{\mathrm{II}}{ }_{3}(\mathrm{~m}\right.$ dea $\left.)_{6}(\mathrm{AcO})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O} \quad$ (1), $\quad\left[\mathrm{Co}_{4}{ }_{4} \mathrm{Co}^{\mathrm{III}}{ }_{3}(\mathrm{e}-\mathrm{dea})_{6}\left(\mathrm{AcO}_{3}\right)_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2} \quad$ (2). Starting from $\mathrm{Co}\left(\mathrm{ClO}_{4}\right) \cdot 6 \cdot 6 \mathrm{H}_{2} \mathrm{O}$, diethanolamine $\left(\mathrm{H}_{2} \mathrm{dea}\right)$ and pyridine-3-carboxylic acid (nicotinic acid $=\mathrm{Hna}$) or pyridine-4-carboxylic acid (isonicotinic acid $=$ Hina), two other mixed valence $\mathrm{Co}^{\mathrm{II}} / \mathrm{Co}^{\mathrm{III}}$ complexes, $\left[\mathrm{Co}^{\mathrm{III}}{ }_{3} \mathrm{Co}^{\mathrm{II}}{ }_{4}(\mathrm{dea})_{6}(\mathrm{na})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \cdot \mathrm{H}_{2} \mathrm{O}$ (3) and $\left[\mathrm{Co}_{3}{ }^{\mathrm{III}} \mathrm{Co}^{\mathrm{II}}{ }_{4}(\mathrm{dea})_{6}(\mathrm{ina})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (4), have been obtained. The four compounds have been characterized by single crystal X-ray diffraction, elemental analysis, IR and UV-VIS spectroscopy. The four new compounds are members of the family of homometallic mixed-valence $\mathrm{Co}^{\mathrm{II}} / \mathrm{Co}^{\mathrm{III}}$ featuring a disk shape.

INTRODUCTION

Aminoalcohols are largely employed to generate homo- and heterometallic alkoxido-bridged clusters. ${ }^{1 a-e}$ The aggregation of multimetallic complexes using such ligands is favored by their chelating behavior and, especially, by the ability of the alkoxido group to bridge two or three metal ions (Scheme 1). Numerous aminoalcohols, carrying one or more OH groups, have been employed, among these monethanolamine, monopropanolamine, diethanolamine, and triethanolamine being very popular. ${ }^{2 a-f}$ The deprotonation of one or more OH groups can occur either spontaneously, or in the presence of a base, currently triethylamine. A plethora of clusters with various nuclearities has been
obtained through self-assembly processes involving aminoalcohols and 3d metal ions (cobalt, manganese, iron). The anions arising from the starting metal salts, the solvent molecules or other coligands play an important role on the nature of the resulting compounds (nuclearity, topology of the metal centers). This synthetic approach has been extended towards heterometallic clusters, containing either two different 3 d metal ions, ${ }^{3 \mathrm{a}-\mathrm{d}}$ or 3 d and 4 f metal ions. ${ }^{4-\mathrm{d}}$ An interesting synthetic approach leading to heterometallic alkoxido-bridged clusters has been developed by Nesterov, Vassilyeva, Kokozay et al. ${ }^{5 a-d}$ It consists of one-pot reactions between metal salts, metal powders (most frequently copper) and aminoalcohols.

[^0]

Scheme 1 - Deprotonated aminoalcohol ligand and its binding modes in polynuclear complexes.

When $\mathrm{Mn}^{\mathrm{II}}$ or $\mathrm{Co}^{\mathrm{II}}$ salts are employed, the resulting homometallic clusters contain the metal ions in different oxidation states: $\mathrm{Mn}^{\mathrm{II}}-\mathrm{Mn}^{\text {III }}$, ${ }^{\text {a-d }}$ $\mathrm{Co}^{\mathrm{II}}$ - $\mathrm{Co}^{\text {III }}{ }^{7 \mathrm{a}-\mathrm{g}}{ }^{\text {P }}$ The basicity of the aminoalcohols favors the oxidation of the divalent metal ions, and their chelating ability prevents the formation of the corresponding oxides. Let us focus here on the particular case of cobalt, selecting several representative examples. The reaction between CoCl_{2} and N, N-Bis(2-aminoethyl)ethanolamine, abbreviated as HL, in THF, affords a binuclear cobalt complex, $\left[\mathrm{Col}{ }^{\text {III }}(\mu-\mathrm{OH}) \mathrm{Co}^{\text {III }}(\mathrm{HL})\right]\left(\mathrm{Co}^{\text {II }} \mathrm{Cl}_{4}\right) \mathrm{Cl}^{7 \text { 7a }}{ }^{7}$ Hosseinian et al. have reported heterocubane $\mathrm{Co}^{\mathrm{II} / \mathrm{III}}$
compounds
$\left[\mathrm{Co}^{\mathrm{II}}{ }_{2} \mathrm{Co}^{\mathrm{III}} 2(\text { tea })_{2}(\mathrm{py})_{2}\left(\mathrm{NO}_{3}\right)_{4}\right] \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$,
$\left[\mathrm{Co}^{\mathrm{II}}{ }_{2} \mathrm{Co}^{\mathrm{III}} 2\left(\mu_{3}-\mathrm{OH}\right)_{2}(\mathrm{Htea})_{2}(\mathrm{bpy})_{4}\right]\left(\mathrm{NO}_{3}\right)_{4}$, and $\left[\mathrm{Co}^{\mathrm{II}}{ }_{2} \mathrm{CO}^{\mathrm{III}}{ }_{2}\left(\mu_{3}-\right.\right.$
$\left.\mathrm{OH})_{2}(\mathrm{Htea})_{2}(\text { phen })_{4}\right]\left(\mathrm{NO}_{3}\right)_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN} \cdot 2 \mathrm{CH}_{3} \mathrm{OH}$
$\left(\mathrm{H}_{3}\right.$ tea $=$ triethanolamine and $\mathrm{py}=$ pyridine, bpy $=$ $2,2^{\prime}$-bipyridine and phen $=1,10$-phenantroline). ${ }^{7 \mathrm{~b}}$ Das and Shivashankar have synthesised two tetranuclear complexes, $\left[\mathrm{Co}_{4}(\mathrm{teaH})_{2}\left(\mathrm{teaH}_{2}\right)_{2}(\mathrm{OAc})_{2}\right] \cdot 2\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$ and $\left[\mathrm{Co}_{4}(\mathrm{dea})_{2}\left(\mathrm{deaH}_{2}\right)_{2}(\mathrm{AcO})_{6}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ by reacting the acetone solution of $\mathrm{Co}(\mathrm{AcO})_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ with triethanolamine and diethanolamine, respectively. ${ }^{70}$ Scheurer and coworkers have obtained different types of $\mathrm{Co}^{\mathrm{II}}$ cubanes: $\left[\mathrm{Co}^{\mathrm{II}}{ }_{4}\left(\mathrm{Cl}_{4}\right)_{4}\left(\mathrm{HL}^{\prime}\right)_{4}\right]\left(\mathrm{HL}^{\prime}=\mathrm{N}\right.$ -alkyl-substituted dietanolamine). ${ }^{7 d}$ Other tetranuclear complexes have been reported by Siddiqi et al., $\left[\mathrm{Co}_{4}\left(\mu_{3}-\mathrm{OH}\right)_{2}\left(\mu_{2}-\right.\right.$ dea $\left.)_{2}(\mathrm{AA})_{4}\right] \cdot 4 \mathrm{Cl} \cdot 8 \mathrm{H}_{2} \mathrm{O}$, with a defect dicubane topology and two $\mathrm{Co}^{\mathrm{II}}$ and two $\mathrm{Co}^{\mathrm{III}}$ ions, where $\mathrm{AA}=$ bpy and phen, respectively. ${ }^{7 \mathrm{e}} \mathrm{A}$ hexanuclear $\mathrm{Co}^{\mathrm{IIIIII}}$ cluster has been synthesised by Alley et al., starting from $\mathrm{Co}(\mathrm{OAc})_{2}$ and 2-amino-2-metyl-1,3propandiol (ampd), in a mixture of solvents (methanol/water), the result being $\left[\mathrm{Co}_{4}{ }_{4} \mathrm{Co}^{\mathrm{III}}{ }_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{MeOH})(\mathrm{AcO})_{6}(\mathrm{ampd})_{4}\right] .{ }^{7 \mathrm{f}}$

Another hexanuclear complex, $\left[\mathrm{Co}_{4}{ }^{\text {II }} \mathrm{Co}_{2}{ }^{\text {III }}(\text { dea })_{2}(\mathrm{Hdea})_{4}(\text { piv })_{4}\right]\left(\mathrm{ClO}_{4}\right)_{2} \quad \mathrm{H}_{2} \mathrm{O}$, has been reported by us. ${ }^{78}$ Several other heptanuclear
cobalt complexes with a disk shape, ${ }^{8-12}$ have been synthesized with cobalt ions in different oxidation states and a variety of ligands: $\mathrm{Co}^{\mathrm{II}}{ }_{7},{ }^{8 a^{-j}} \mathrm{Co}^{\mathrm{II}}{ }_{6} \mathrm{Co}^{\mathrm{III}}$, ${ }^{9 \mathrm{a}-\mathrm{d}} \mathrm{Co}^{\mathrm{II}}{ }_{5} \mathrm{Co}^{\mathrm{III}}{ }_{2}{ }^{10 \mathrm{a}} \mathrm{Co}^{\mathrm{II}}{ }_{4} \mathrm{Co}^{\mathrm{III}}{ }_{3}{ }^{11 \mathrm{a}-\mathrm{e}}$ and $\mathrm{Co}^{\mathrm{II}}{ }_{3} \mathrm{Co}^{\mathrm{III}}{ }_{4}{ }^{12}$

In previous paper we have reported on a $\mathrm{Co}{ }^{\mathrm{II}} / \mathrm{Co}^{\text {III }}$ heptanuclear cluster with diethanolamine and acetate as ligands, $\left[\mathrm{Co}_{4}{ }^{\text {II }} \mathrm{Co}_{3}{ }^{\text {III }}(\mathrm{dea})_{6}(\mathrm{AcO})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{0.75} \cdot(\mathrm{AcO})_{1.75} \cdot 0.5 \mathrm{H}_{2}$ O. ${ }^{11 \mathrm{cc}}$ In this paper we report on four new mixedvalence heptanuclear $\mathrm{Co}^{\mathrm{II}} / \mathrm{Co}^{\mathrm{III}}$ clusters, which are obtained using diethanolamine, diethanolamine derivatives (N -methyldiethanolamine $=\mathrm{m}-\mathrm{H}_{2}$ dea, N -ethyldiethanolamine $=\mathrm{e}-\mathrm{H}_{2} \mathrm{dea}$) and carboxylato coligands (nicotinato $=$ na, isonicotinato $=$ ina).

RESULTS AND DISCUSSION

Four new mixed valence $\mathrm{Co}{ }^{\mathrm{II}} / \mathrm{Co}^{\text {III }}$ heptanuclear clusters have been obtained and characterized. The first two compounds, $\left[\mathrm{Co}^{\mathrm{II}}{ }_{4} \mathrm{Co}^{\mathrm{III}}{ }_{3}(\mathrm{~m}\right.$ dea $\left.)_{6}(\mathrm{AcO})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ (1) and $\left[\mathrm{Co}^{\mathrm{II}}{ }_{4} \mathrm{Co}^{\mathrm{III}}{ }_{3}(\mathrm{e}-\right.$ dea $\left.)_{6}(\mathrm{AcO})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}(\mathbf{2})$, have been aggregated by the aerobic reaction of cobalt(II) acetate tetrahydrate and N -methyldiethanolamine (m $\mathrm{H}_{2} \mathrm{dea}$) (1) and cobalt(II) acetate tetrahydrate and N -ethyldiethanolamine ($\mathrm{e}-\mathrm{H}_{2} \mathrm{dea}$) for (2), in the presence of AcONa and NaClO_{4}. Compounds $\left[\mathrm{Co}^{\mathrm{III}}{ }_{3} \mathrm{Co}^{\mathrm{II}}{ }_{4}(\mathrm{dea})_{6}(\mathrm{na})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \cdot \mathrm{H}_{2} \mathrm{O}(\mathbf{3})$ and $\left[\mathrm{Co}^{1 \mathrm{II}}{ }_{3} \mathrm{Co}^{\mathrm{II}}{ }_{4}(\mathrm{dea})_{6}(\mathrm{ina})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (4) have been obtained by reacting $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with diethanolamine ($\mathrm{H}_{2} \mathrm{dea}$) and nicotinic acid (Hna) (3) and $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with diethanolamine $\left(\mathrm{H}_{2} \mathrm{dea}\right)$ and isonicotinic acid (Hina) (4), respectively. Their crystal structures have been solved. The four compounds contain $4 \mathrm{Co}^{\mathrm{II}}$ and $3 \mathrm{Co}^{\mathrm{III}}$ sites. The topology of the metal ions in compounds (1) - (4) is similar (Figures 1 and 2). The oxidation states of the cobalt ions were assigned on the basis of charge balance, the bond length considerations and BVS calculations (Table S1, Supporting Information). In all four clusters the aminoalkoxido and carboxylato ligands behave in an identical fashion. The ligands (aminoalcohols and carboxylato) surround the periphery of the cluster. Two deprotonated aminoalcohol molecules are coordinated to each $\mathrm{Co}^{\text {III }}$ ion. Three carboxylato ligands also support this core, acting as chelating ligands towards the peripheral $\mathrm{Co}^{\mathrm{II}}$ ions. The seven cobalt centers are held together by six μ_{3} - and six μ_{2}-alkoxido groups arising from six aminoalcohol ligands. The crystal structure of (1) (4) consists of heptanuclear cations, uncoordinated perchlorate ions, water molecules and solvent molecules in the particular case of (3).

Since the four clusters display essentially identical structures, we will limit our discussion to compound (3). There are seven independent cobalt ions in (3), labeled Col-Co7.The seven cobalt ions display distorted octahedral geometries. The stereochemistry of $\mathrm{Col}\left(\mathrm{Co}^{\mathrm{II}}\right)$ is the more regular, involving six oxygen donor atoms derived from six μ_{3}-alkoxido groups, with $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ angles in the range of $78.65(15)-98.06(16)^{\circ}$ (Table 2) and CoO bonds ranging between 2.071(4) and 2.104(4) \AA (Table 1). The other $\mathrm{Co}^{\mathrm{II}}$ ions (Co2, Co 6 and Co 7) have bond lengths varying between $1.975(4)$ and $2.203(5) \AA$. The bond lengths of $\mathrm{Co}^{\mathrm{III}}$ ions (Co3,

Co 4 and Co5) are shorter: $\mathrm{Co}-\mathrm{N}$ bonds fall in the range $1.940(6)-1.960(5) \AA$ and Co-O range between 1.875(4) and 1.915(4) \AA. The intramolecular distances between the central cobalt atom (Co1) and the peripheral ones (Co2, Co3, Co4, Co5, Co6, Co 7) are $\mathrm{Co} 1-\mathrm{Co} 2=2.992, \mathrm{Co} 1-\mathrm{Co} 3=2.992$, $\mathrm{Co} 1-\mathrm{Co} 4=2.997, \mathrm{Co} 1-\mathrm{Co} 5=2.991, \mathrm{Co} 1-\mathrm{Co} 6$ $=3.162$, Co1 - Co7 = $3.180 \AA$ (Table 1 and Table S2).

A summary of the important interatomic distances and angles is provided in Tables 1, 2 and S2, S3 (Supporting Information).

Fig. 1 - Perspective views of the heptanuclear cations in (1) and (2) (': 1-y, 1+x-y, z, ": -x+y, 1-x,z).

Fig. 2 - Perspective views of the heptanuclear cations in (3) and (4).

Table 1
Selected bond lengths (\AA) in compound (3)

		(3)						
Co1	O13	$2.104(4)$	Co4	O11	$1.915(4)$	Co7	O11	$2.183(4)$
Co1	O15	$2.089(4)$	Co4	O16	$1.911(4)$	Co7	O8	$2.189(4)$
Co1	O9	$2.075(4)$	Co4	O17	$1.875(4)$	Co7	O21	$1.983(5)$
Co1	O11	$2.094(4)$	Co4	O21	$1.876(4)$	Co7	O10	$1.993(5)$
Co1	O8	$2.100(4)$	Co4	N4	$1.943(5)$	Co7	O3	$2.141(5)$
Co1	O16	$2.071(4)$	Co4	N10	$1.941(5)$	Co7	O4	$2.203(5)$
Co2	O13	$2.163(4)$	Co5	O9	$1.906(4)$	Co1	Co2	2.992
Co2	O12	$1.982(4)$	Co5	O8	$1.911(4)$	Co1	Co3	2.992
Co2	O16	$2.186(4)$	Co5	O10	$1.879(4)$	Co1	Co4	2.997
Co2	O17	$1.978(4)$	Co5	O7	$1.881(4)$	Co1	Co5	2.991
Co2	O2	$2.116(4)$	Co5	N5	$1.940(6)$	Co1	Co6	3.162
Co2	O1	$2.191(4)$	Co5	N6	$1.952(6)$	Co1	Co7	3.180
Co3	O13	$1.908(4)$	Co6	O15	$2.173(4)$			
Co3	O15	$1.909(4)$	Co6	O9	$2.186(4)$			
Co3	O12	$1.889(4)$	Co6	O14	$1.983(4)$			
Co3	O14	$1.881(4)$	Co6	O7	$1.975(4)$			
Co3	N3	$1.944(5)$	Co6	O5	$2.133(4)$			
Co3	N2	$1.960(5)$	Co6	O6	$2.164(5)$			

Table 2
Selected angles $\left({ }^{\circ}\right)$ in compound (3)

(3)											
O15	Col	O13	78.65(15)	O16	Co4	O11	88.09(17)	O8	Co7	O11	81.99(15)
O9	Col	O13	92.48(11)	O17	Co4	O11	96.17(18)	O21	Co7	O11	73.48(16)
O9	Col	O15	137.30(12)	O17	Co4	O16	82.45(17)	O21	Co7	O8	93.06(18)
O11	Col	O13	97.92(16)	O21	Co4	O11	82.38(19)	O10	Co7	O11	94.96(18)
O11	Col	O15	174.87(16)	O21	Co4	O16	97.00(19)	O10	Co7	O8	73.59(17)
O11	Col	O9	97.64(16)	O21	Co4	O17	178.5(2)	O10	Co7	O21	163.68(18)
O8	Col	O13	174.40(16)	N4	Co4	O11	87.8(2)	O3	Co7	O11	108.72(17)
O8	Col	O15	97.42(16)	N4	Co4	O16	166.3(2)	O3	Co7	O8	166.09(18)
O8	Col	O9	78.66(17)	N4	Co4	O17	85.0(2)	O3	Co7	O21	98.5(2)
O8	Col	O11	86.27(16)	N4	Co4	O21	95.4(2)	O3	Co7	O10	96.15(19)
O16	Col	O13	86.40(15)	N10	Co4	O11	166.6(2)	O4	Co7	O11	166.01(18)
O16	Col	O15	96.50(15)	N10	Co4	O16	87.4(2)	O4	Co7	O8	110.13(18)
O16	Col	O9	175.77(16)	N10	Co4	O17	95.7(2)	O4	Co7	O21	98.3(2)
O16	Col	O11	79.40(16)	N10	Co4	O21	85.7(2)	O4	Co7	O10	95.2(2)
O16	Col	O8	98.06(16)	N10	Co4	N4	99.3(2)	O4	Co7	O3	60.6(2)
O12	Co2	O13	74.34(16)	O8	Co5	O9	87.75(17)	Col	O16	Co 2	95.84(16)
O16	Co2	O13	82.16(15)	O10	Co5	O9	96.07(19)	Col	O13	Co2	95.57(16)
O16	Co2	O 12	92.79(16)	O10	$\mathrm{Co5}$	O8	82.93(19)	Col	O15	Co6	95.75(16)
O17	Co2	O13	96.90(16)	O7	Co5	O9	83.22(18)	Col	O9	Co6	95.76(16)
O17	Co2	O12	164.79(17)	07	Co5	O8	95.57(19)	Col	O11	Co7	96.04(17)
O17	Co2	O16	73.46(16)	O7	Co5	O10	178.37(19)	Col	O8	Co7	95.70(16)
O2	Co2	O13	106.96(16)	N5	Co5	O9	166.4(2)				
O2	Co2	O12	100.30(17)	N5	Co5	O8	87.7(2)				
O2	Co2	O16	165.64(16)	N5	Co5	O10	96.0(2)				
O2	Co2	O17	94.11(17)	N5	Co5	07	84.5(2)				
O1	Co2	O13	163.63(16)	N6	Co5	O9	87.1(2)				
O1	Co2	O12	96.36(18)	N6	Co5	O8	166.4(2)				
O1	Co2	O16	112.18(16)	N6	Co5	O10	85.2(2)				
O1	Co2	O17	94.90(19)	N6	Co5	07	96.3(2)				
O1	Co2	O 2	60.76(17)	N6	Co5	N5	100.1(3)				
O15	Co3	O13	88.23(17)	O9	Co6	O15	81.87(15)				
O 12	Co3	O13	82.72(17)	O14	Co6	O15	74.16(16)				
O12	Co3	O15	95.73(18)	O14	Co6	O9	93.32(17)				
O14	Co3	O13	94.58(18)	O7	Co6	O15	94.61(17)				
O14	Co3	O15	82.96(18)	O7	Co6	O9	74.19(16)				
O14	Co3	O12	177.05(18)	O7	Co6	O14	164.48(18)				
N3	Co3	Col	130.70(17)	O5	Co6	O15	107.85(16)				

N3	Co3	O13	$87.7(2)$	O5	Co6	O9	$169.42(16)$
N3	Co3	O15	$166.3(2)$	O5	Co6	O14	$93.40(18)$
N3	Co3	O12	$96.7(2)$	O5	Co6	O7	$100.34(18)$
N3	Co3	O14	$84.4(2)$	O6	Co6	O15	$165.05(17)$
N2	Co3	O15	$87.5(2)$	O6	Co6	O9	$109.79(17)$
N2	Co3	O12	$85.2(2)$	O6	Co6	O14	$95.31(19)$
N2	Co3	O14	$97.3(2)$	O6	Co6	O7	$97.6(2)$
N2	Co3	N3	$99.2(2)$	O6	Co6	O5	$61.42(18)$

The crystallization water molecule (O1w) is hydrogen bonded to the carboxylato oxygen atom (O1) arising from the nicotinato ligand (Figure 3).

The analysis of the packing diagram (Figure 4) reveals the formation of supramolecular dimers
supported by $\pi-\pi$ stacking interactions ($3.35 \AA$) established between two pyridyl fragments arising two neighboring clusters. Only one out of the three pyridyl fragments from each cluster is involved in these interactions.

Fig. 3 - Hydrogen bond established between the water molecule and one carboxylate oxygen atom in compound (3).

Fig. 4 - Packing diagram in crystal (3) showing the $\pi-\pi$ staking interactions between the pyridyl rings (left: view along the crystallographic b axis).

Fig. 5 - Diffuse reflectance spectra for compounds (1) - (4).

The UV-VIS spectra of the four compounds are displayed in Figure 5 and result from the superposition of the $d-d$ transitions of the $\mathrm{Co}^{\mathrm{II}}$ and Co ${ }^{\text {III }}$ chromophores. ${ }^{13}$ The four spectra have the same features. The bands located at around 1200 nm for (1) - (4), are ascribed to the ${ }^{4} \mathrm{~T}_{1 g} \rightarrow{ }^{4} \mathrm{~T}_{2 \mathrm{~g}}$ transition of hexacoordinated cobalt(II).

EXPERIMENTAL

Materials and methods

All the chemicals used were purchased from commercial sources and used without further purification. Elemental analyses (C, H, N) were performed on an EuroEA Elemental Analyzer.
$\left[\mathrm{Co}_{4}{ }_{4} \mathrm{Co}^{\mathrm{III}}{ }_{3}(\mathrm{~m}-\mathrm{dea})_{6}(\mathrm{AcO})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathbf{8} \mathrm{H}_{2} \mathrm{O}$ (1). An ethanolic solution (10 mL) of sodium acetate $(0.0246 \mathrm{~g}, 0.3 \mathrm{mmol})$ and cobalt(II) acetate tetrahydrate $(0.0747 \mathrm{~g}, 0.3 \mathrm{mmol})$ was mixed with an ethanolic solution $(10 \mathrm{~mL})$ of N -methyldiethanolamine $(0.0714 \mathrm{~g}, 0.6 \mathrm{mmol})$ and triethylamine $(0.166 \mathrm{~mL}, 1.2 \mathrm{mmol})$ and an ethanolic solution $(10 \mathrm{~mL})$ of sodium perchlorate $(0.0421$ $\mathrm{g}, 0.3 \mathrm{mmol})$. The mixture was stirred for two hours and then filtered off. The resulting green solution was allowed to evaporate in the open air for four weeks, after which green crystals were collected. Elemental chemical analysis: 26.44% C, $5.61 \% \mathrm{H}$, 5.14%, N (calcd); 25.97 \% C, 6.03 \% H, 5.59%, N (found). IR ($\left.\mathrm{cm}^{-1}, \mathrm{KBr}\right): 3432(\mathrm{~s}), 2932(\mathrm{w}), 2865(\mathrm{w}), 1549(\mathrm{~s}), 1456(\mathrm{~s})$, $1420(\mathrm{~m}), 1145(\mathrm{vs}), 1088(\mathrm{vs}), 1027(\mathrm{vs}), 626(\mathrm{~m})$.
$\left[\mathrm{Co}^{\mathrm{II}}{ }_{4} \mathrm{Co}^{\mathrm{III}}{ }_{3}(\mathrm{e}-\mathrm{dea})_{6}(\mathbf{A c O})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}(2)$. An ethanolic solution (10 $\mathrm{mL})$ of sodium acetate $(0.0246 \mathrm{~g}, 0.3 \mathrm{mmol})$ and cobalt(II) acetate tetrahydrate $(0.0747 \mathrm{~g}, 0.3 \mathrm{mmol})$ was mixed with an ethanolic solution $(10 \mathrm{~mL})$ of N -ethyldiethanolamine $(0.0799 \mathrm{~g}, 0.6 \mathrm{mmol})$ and triethylamine $(0.166 \mathrm{~mL}, 1.2 \mathrm{mmol})$, and an ethanolic solution $(10 \mathrm{~mL})$ of sodium perchlorate $(0.0421 \mathrm{~g}, 0.3 \mathrm{mmol})$. The mixture was stirred for two hours and then filtered off. The resulting green solution was allowed to evaporate in the open air for four weeks, after which green crystals were collected.

Elemental chemical analysis: $32.01 \% \mathrm{C}, 5.58 \% \mathrm{H}, 5.33 \% \mathrm{~N}$ (calcd.); $32.46 \% \mathrm{C}, 5.04 \% \mathrm{H}, 5.59 \%$, N (found). IR ($\mathrm{cm}^{-1}, \mathrm{KBr}$): 3430(s), 2924(w), 2860(w), 1548(s), 1452(m), 1145(vs), 1099(vs), 1034(vs), 624(m).
$\left[\mathrm{Co}^{\mathrm{III}}{ }_{3} \mathrm{Co}^{\mathrm{II}}{ }_{4}(\text { dea })_{6}(\mathrm{na})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \cdot \mathrm{H}_{2} \mathrm{O}$ (3). An ethanolic solution $(10 \mathrm{~mL})$ of $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol} ; 0.183$ $\mathrm{g})$ was reacted with H_{2} dea ($1 \mathrm{mmol} ; 0.105 \mathrm{~g}$) dissolved in 10 mL of methanol and triethylamine ($2 \mathrm{mmol} ; 0.202 \mathrm{~g}, 0.278 \mathrm{~mL}$). To the resulting dark green solution, a methanolic solution $(10 \mathrm{~mL})$ of nicotinic acid ($1 \mathrm{mmol}, 0.123 \mathrm{~g}$) and triethylamine ($1 \mathrm{mmol}, 0.139$ mL). The final mixture was stirred for 2 h and then it was filtered off. The resulting dark green solution was allowed to evaporate in the open air for two weeks. Dark green single crystals appeared after a week by slow evaporation of the solution at room temperature. Elemental chemical analysis: $31.60 \% \mathrm{C}, 4.10 \% \mathrm{H}$, $7.54 \%, \mathrm{~N}$ (calcd.); $31.00 \% \mathrm{C}, 4.22 \% \mathrm{H}, 7.84 \%$, N (found). IR $\left(\mathrm{cm}^{-1}, \mathrm{KBr}\right): 3421(\mathrm{~s}), 3268(\mathrm{~m}), 2938(\mathrm{~m}), 2872(\mathrm{~m})$, $1595(\mathrm{~m})$, 1542(s), 1433(s), 1410(s), 1284(w), 1200(w), 1100(vs), 1068(vs), 1043(vs), 1000(vs), 900(w), 698(m), 624(m).
$\left[\mathrm{Co}^{\mathrm{III}}{ }_{3} \mathrm{Co}^{\mathrm{II}}{ }_{4}(\text { dea })_{6}(\mathrm{ina})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (4). An ethanolic solution (10 $\mathrm{mL})$ of $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol}, 0.183 \mathrm{~g})$ was reacted with H_{2} dea ($1 \mathrm{mmol}, 0.105 \mathrm{~g}$) dissolved in 10 mL of methanol and triethylamine ($2 \mathrm{mmol}, 0.202 \mathrm{~g}, 0.278 \mathrm{~mL}$). The mixture was stirred for five minutes and then was mixed with a methanolic solution $(10 \mathrm{~mL})$ of isonicotinic acid $(0.5 \mathrm{mmol}, 0.062 \mathrm{~g})$ with triethylamine ($0.5 \mathrm{mmol}, 0.069 \mathrm{~mL}$). The final mixture was stirred for 2 h and then it was filtered off. The resulting dark green solution was allowed to evaporate in the open air for several days. Dark green single crystals appeared by slow evaporation of the solution at room temperature. Elemental chemical analysis: $31.72 \% \mathrm{C}, 3.80 \% \mathrm{H}, 7.93 \%$, N (calcd.); $31.41 \% \mathrm{C}, 3.92 \% \mathrm{H}$, $7.97 \% \mathrm{~N}$ (found). IR ($\mathrm{cm}^{-1}, \mathrm{KBr}$): 3438, 3268(m), 2936(m), 2874(m), 1640(m), 1589(m), 1538(m), 1498(s), 1416(s), 1285(w), 1200(w), 1100(vs), 1070(vs), 1000(vs), 914(w), 626(m).

Physical Measurements

IR spectra (KBr pellets) were recorded on a Tensor 37 spectrophotometer in the $4000-400 \mathrm{~cm}^{-1}$ region and UV-Vis spectra were recorded with a Jasco V-670 spectrophotometer, using MgO oxide as a reference.

Table 3
Crystallographic data, details of data collection and structure refinement parameters for compounds (1) - (4)

Compound	(1)	(2)	(3)	(4)
Chemical formula	$\mathrm{Co}_{7} \mathrm{C}_{36} \mathrm{H}_{91} \mathrm{O}_{34} \mathrm{~N}_{6} \mathrm{Cl}_{2}$	$\mathrm{Co}_{7} \mathrm{C}_{42} \mathrm{H}_{87} \mathrm{O}_{26} \mathrm{~N}_{6} \mathrm{Cl}_{2}$	$\mathrm{Co}_{7} \mathrm{C}_{44} \mathrm{H}_{74} \mathrm{O}_{28} \mathrm{~N}_{9} \mathrm{Cl}_{2}$	$\mathrm{Co}_{7} \mathrm{C}_{42} \mathrm{H}_{66} \mathrm{O}_{26} \mathrm{~N}_{9} \mathrm{Cl}_{2}$
$M\left(\mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)$	1635.74	1575.76	1660	1596
Temperature (K)	293(2)	293(2)	293(2)	293(2)
Wavelength (\AA)	0.71073	0.71073	0.71073	0.71073
Crystal system	triclinic	trigonal	monoclinic	monoclinic
Space group	P-1	$R-3 c$	$P 2_{1} / \mathrm{c}$	$P 2_{1} / \mathrm{c}$
$a(\AA)$	13.5105(2)	15.7120(6)	21.6144(3)	23.1182(3)
$b(\AA)$	13.7641(3)	15.7120(6)	12.2760(4)	12.0379(4)
$c(\AA)$	18.8263(4)	43.224(3)	24.3516(5)	23.9297(5)
$\alpha\left({ }^{\circ}\right)$	98.361(3)	90	90	90
$\beta\left({ }^{\circ}\right)$	90.520(2)	90	92.309(6)	100.155(6)
$\gamma\left({ }^{\circ}\right.$	117.406(4)	120	90	90.00
$V\left(\AA^{3}\right)$	3063.45(16)	9241.0(9)	6456.2(3)	6555.2(3)
Z	2	12	4	4
$D_{c}\left(\mathrm{~g} \cdot \mathrm{~cm}^{-3}\right)$	1.509	1.669	1.608	1.778
$\mu\left(\mathrm{mm}^{-1}\right)$	1.961	2.008	0.915	1.592
$F\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$	1435	4872	3132	3488
Goodness-of-fit (GOF) on F^{2}	1.0758	1.088	1.019	1.110
$\begin{aligned} & \text { Final } R_{l}, w R_{2} \\ & {[I>2 \sigma(l)]} \end{aligned}$	0.0918, 0.2239	0.0390, 0.0731	0.0635,0.1650	$0.1279,0.3532$
$R_{1}, w R_{2}$ (all data)	0.1978, 0.3029	0.0744, 0.0894	0.0729, 0.1695	0.1668, 0.3732
Largest difference in peak and hole $\left(\mathrm{e}^{-3}\right)^{-3}$	$-1.485,1.566$	-0.697, 0.525	-1.121, 2.500	-0.693, 2.050

X-ray crystallographic analysis

Crystals of (1) - (4) were measured on STOE IPDSII single crystal diffractometer, using graphite-monochromated Mo Ka radiation $(\lambda=0.71073 \AA)$. The structures were solved by direct methods and refined by full-matrix least-squares techniques based on F^{2}. The non-H atoms were refined with anisotropic displacement parameters. A summary of the crystallographic data and refinement parameters for $(\mathbf{1})-(4)$ is given in Table 3. The very small size of crystals $\mathbf{1}$ and $\mathbf{4}$ (needls shape crystals) and poor diffraction patterns were the reason of the significantly flattened thermal ellipsoids and the high R_{1} parameters. CCDC reference numbers: 19864531986456.

REFERENCES

1. (a) A. Scheurer, A. M. Ako, R. W. Saalfrank, F. W. Heinemann, F. Hampel, K. Petukhov, K. Gieb, M. Stocker and P. Müller, Chem. Eur. J., 2010, 16, 4784 4792; (b) G. E. Kostakis, S. P. Perlepes, V. A. Blatov, D. M. Proserpio and A. K. Powell, Coord. Chem. Rev., 2012, 256, 1246 - 1278; (c) Z. A. Siddiqi, A. Siddique, M. Shahid, P. K. Sharma, M. Khalid and A. Yogi, J. Molec. Struct., 2013, 1036, 209 - 215; (d) S. K. Langley, N. F. Chilton, B. Moubaraki and K. S. Murray, Dalton Trans., 2012, 41, 1033 - 1046; (e) T. Nakajima, K. Seto, F. Horikawa, I. Shimizu, A. Scheurer, B. Kure, T. Kajiwara, T. Tanase and M. Mikuriya, Inorg. Chem., 2012, 51, 12503-12510.
2. (a) V. Tudor, G. Marin, V. Kravtsov, Yu. A. Simonov, M. Julve, F. Loret and M. Andruh, Rev. Roum. Chim., 2006, 51, 367 - 371; (b) G. Marin, V.C. Kravtsov, Yu. A. Simonov, V. Tudor, J. Lipkowski and M. Andruh, J. Molec. Struct., 2006, 796, 123 - 128; (c) V. Tudor, T.

Mocanu, F. Tuna, A. M. Madalan, C. Maxim, S. Shova and M. Andruh, J. Molec. Struct., 2013,1046, 164 - 170; (d) A. M. Ako, O. Waldmann, V. Mereacre, F. Klöwer, I. J. Hewitt, C. E. Anson, H. U. Güdel and A. K. Powell, Inorg. Chem., 2007, 46, 756 - 766; (e) V. Tudor, V. C. Kravtsov, M. Julve, F. Lloret, Y. A. Simonov, B. B. Averkiev and M. Andruh, Inorg. Chim. Acta., 2005, 358, 2066 - 2072; (f) R. M. Escovar, J. H. Thurston, T. OuldEly, A. Kumar and K. H. Whitmire, Z. Anorg. Allg. Chem., 2005, 631, 2867-2876.
3. (a) V. G. Makhankova, O. Y. Vassilyeva, V. N. Kokozay, B. W. Skelton, J. Reedijk, G. A. Van Albada, L. Sorace and D. Gatteschi, New J. Chem., 2001, 25, 685 - 689; (b) V. G. Makhankova, O. Y. Vassilyeva, V. N. Kokozay, B. W. Skelton, L. Sorace and D. Gatteschi, J. Chem. Soc., Dalton Trans., 2002, 4253 - 4259; (c) Y. Y. Karabach, M. Fatima, C. Guedes da Silva, M. N. Kopylovich, B. Gil-Hernández, J. Sanchiz, A. M. Kirillov and A. J. L. Pombeiro, Inorg. Chem., 2010, 49, 11096 - 11105; (d) E. Martin, V. Tudor, A. M. Madalan, C. Maxim, F. Tuna, F. Lloret, M. Julve and M. Andruh, Inorg. Chim. Acta, 2018, 475, 98-104.
4. (a) J. W. Sharples and D. Collison, Coord. Chem. Rev., 2014, 260, 1 - 20; (b) V. Mereacre, D. Prodius, Y. Lan, C. Turta, C. E. Anson and A. K. Powell, Chem. Eur. J., 2011, 17, 123 - 128; (c) S. K. Langley, L. Ungur, N. F. Chilton, B. Moubaraki, L. F. Chibotaru and K. S. Murray, Inorg. Chem., 2014, 53, $4303-4315$; (d) I. Radu, V. C. Kravtsov, S. M. Ostrovsky, O. S. Reu, K. Krämer, S. Decurtins, S.-X. Liu, S. I. Klokishner, S. G. Baca, Inorg. Chem., 2017, 56, 2662 - 2676.
5. (a) D. S. Nesterov, V. G. Makhankova, O. Y. Vassilyeva, V. N. Kokozay, L. A. Kovbasyuk, B. W. Skelton and J. Jezierska, Inorg. Chem., 2004, 43, 7868 - 7876; (b) D. S. Nesterov, V. G. Makhankova, V. N. Kokozay and B. W. Skelton, Inorg. Chim. Acta, 2005, 358, 4519 - 4526; (c)
D. S. Nesterov, V. N. Kokozay, V. V. Dyakonenko, O. V. Shishkin, J. Jezierska, A. Ozarowski, A. M. Kirillov, M. N. Kopylovich and A. J. L. Pombeiro, Chem. Coтmии., 2006, $4605-4607$; (d) D. S. Nesterov, V. N. Kokozay, B. W. Skelton, J. Jezierska, A. Ozarowski, Dalton Trans., 2007, 558-564.
6. (a) R. W. Saalfrank, A. Scheurer, R. Prakash, F. W. Heinemann, T. Nakajima, F. Hampel, R. Leppin, B. Pilawa, H. Rupp and P. Müller, Inorg. Chem., 2007, 46, 1586 - 1592; (b) L. M. Wittick, K. S. Murray, B. Moubaraki, S. R. Batten, L. Spiccia and K. J. Berry, Dalton Trans., 2004, 1003 - 1011; (c) L. M. Wittick, L. F. Jones, P. Jensen, B. Moubaraki, L. Spiccia, K. J. Berry and K. S. Murray, Dalton Trans., 2006, 1534 - 1543; (d) I. L. Malaestean, M. Speldrich, A. Ellern, S. G. Baca and P. Kögerler, Polyhedron, 2010, 29, 1990-1997.
7. (a) C. Jocher, T. Pape and F. E. Hahn, Z. Naturforsch, 2005, 60, 667 - 672; (b) S. R. Hosseinian, V. Tangoulis, M. Menelaou, C. P. Raptopoulou, V. Psycharis and C. Dendrinou-Samara, Dalton Trans., 2013, 42, 5355 5366; (c) M. Das and S. A. Shivashankar, Appl. Organometal. Chem., 2007, 21, 15 - 25; (d) A. Scheurer, A. M. Ako, R. W. Saalfrank, F. W. Heinemann, F. Hampel, K. Petukhov, K. Gieb, M. Stocker and P. Müller, Chem. Eur. J., 2010, 16, 4784 - 4792; (e) Z. A. Siddiqi, A. Siddique, M. Shahid, M. Khalid, P. K. Sharma, Anjuli, M. Ahmad, S. Kumar, Y. Lan and A. K. Powell, Dalton Trans., 2013, 42, 9513 - 9522; (f) K. G. Alley, R. Bircher, O. Waldmann, S. T. Ochsenbein, H. U. Güdel, Boujemaa Moubaraki, Keith S. Murray, F. F.Alonso, B. F. Abrahams and C. Boskovic, Inorg. Chem., 2006, 45, $8950-8957$; (g) V. Tudor, A. Madalan, V. Lupu, F. Lloret, M. Julvev M. Andruh, Inorg. Chim. Acta, 2010, 363, 823-826.
8. (a) Y.-Z. Zhang, W. Wernsdorfer, F. Pan, Z.-M. Wang and S. Gao, Chem. Commun., 2006, $3302-3304$; (b) X.-N. Cheng, W.-X. Zhang, Y.-Y. Lin, Y.-Z. Zheng and X.-M. Chen, Adv. Mater., 2007, 19, 1494-1498; (c) G. P. Guedes, S. Soriano, N. M. Comerlato, N. L. Speziali, M. A. Novak and M. G. F. Vaz, Inorg. Chem. Comm., 2013, 37, 101 - 105; (d) W. Wang, H. Hai, S.-H. Zhang, L. Yang, C.-L. Zhang and X.-Y. Qin, J. Clust. Sci., 2014, 25, 357 - 365; (e) R. X. Zhao, Q. P. Huang, G. L. S. H.

Zhang, H. Y. Zhang and L. Yang, J. Clust. Sci., 2014, 25, 1099 - 1108; (f) D.-M. Chen, X.-Z. Ma, X.-J. Zhang, N. Xu and P. Cheng, Inorg. Chem., 2015, 54, 2976 - 2982; (g) H. Zhang, J. Zhang, R. Liu, Y. Li, W. Liu and W. Li, Eur. J. Inorg. Chem., 2016, 4134 - 4144 ; (h) T. S. Mahapatra, D. Basak, S. Chand, J. Lengyel, M. Shatruk, V. Bertolasic and D. Ray, Dalton Trans., 2016, 45, 13576 13589; (i) M. Das, D. Basak and D. Ray, J. Indian Chem. Soc., 2018, 95, 821 - 832; (j) R. Gheorghe, G. A. Ionita, .C. Maxim, A. Caneschi, L. Sorace and M. Andruh, Polyhedron, 2019, 171, 269-278.
9. (a) A. A. Kitos, C. G. Efthymiou, C. Papatriantafyllopoulou, V. Nastopoulos, A. J. Tasiopoulos, M. J. Manos, W. Wernsdorfer, G. Christou and S. P. Perlepes, Polyhedron, 2011, 30, 2987 - 2996; (b) A. M. Ullman and D. G. Nocera, J. Am. Chem, Soc., 2013, 135, 15053 - 15061; (c) J.-D. Leng, S.-K. Xing, R. Herchel, J.-L. Liu and M.L. Tong, Inorg. Chem., 2014, 53, 5458 - 5466; (d) M. Moragues-Canovas, C. E. Talbot-Eeckelaers, L. Catala, F. Lloret, W. Wernsdorfer, E. K. Brechin and T. Mallah, Inorg. Chem., 2006, 45, 7038-7040.
10. J.-H. Xu, L.-Y. Guo, H.-F. Su, X. Gao, X.-F. Wu, W.-G. Wang, C.-H. Tung and D. Sun, Inorg. Chem., 2017, 56, 1591-1598.
11. (a) K. G. Alley, R. Bircher, O. Waldmann, S. T. Ochsenbein, H. U. Gudel, B. Moubaraki, K. S. Murray, F. Fernandez-Alonso, B. F. Abrahams and C. Boskovic, Inorg. Chem., 2006, 45, 895; (b) A. Ferguson, A. Parkin, J. Sanchez-Benitez, K. Kamenev, W. Wernsdorfer and M. Murrie, Chem. Commun., 2007, 3473 - 3475; (c) V. Tudor, G. Marin, L. Floret, V.C. Kravtsov, Yu. A. Simonov, M. Julve and M. Andruh, Inorg. Chim. Acta., 2008, 361, 3446 - 3452; (d) H. Zhang, J. Zhang, R. Liu, Y. Li, W. Liu and W. Li, Eur. J. Inorg. Chem., 2016, 4134 - 4144; (e) B.-W. Qin, K.-C. Huang, Y. Zhang, L. Zhou, Z. Cui, K. Zhang, X.-Y. Zhang and J.-P. Zhang, Chem. Eur. J., 2018, 24, 1962-1970.
12. L. F. Chibotaru, L. Ungur, C. Aronica, H. Elmoll, G. Pilet and D. Luneau, J. Am. Chem. Soc., 2008, 130, 12445 12455.
13. A. B. P. Lever, "Inorganic Electronic Spectroscopy", Elsevier Publishing Company, Amsterdam-London-New York, 1968.

[^0]: * Corresponding authors: violeta.tudor@chimie.unibuc.ro or marius.andruh@dnt.ro
 ${ }^{* *}$ Supplementary information on http://web.icf.ro/rrch/ or http://revroum.lew.ro

