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The probabilistic neural networks (PNNs) are now being 
analysed to fix a variety of challenges in the diverse fields of 
science and technology. In chemical graph theory, there are 
several tools, such as polynomials, functions, etc. that can be 
used to characterize different network properties. The 
neighborhood M-polynomial (NM) is one of those that yields 
neighborhood degree sum based topological indices in a manner 
that is less time consuming than the usual approach.  In this 
work, the NM-polynomial of 3-layered and 4-layered 
probabilistic neural networks are derived. Further, some 
neighborhood degree sum based topological indices are 
computed from those polynomials. Applications of the present 
work are interpreted by investigating the chemical importance of 
the indices. Some structure property models are derived. The 
graphical representations of the results are also reported. 

 

 
 
 

INTRODUCTION* 

 Throughout this work, we consider connected 
graph without any loops and parallel edges. Let  
be a simple connected graph having  and 

 as node set and edge set, respectively. The 
degree of a node  of , denoted by , is the total 
number of edges incident to the node  in . The 
degree sum of all nodes adjacent to  in  is 
denoted by , i.e., , where  is the 
collection of all nodes adjacent to . The symbol 

 is known as the neighborhood degree sum of . 
                                                            
* Corresponding author: souravmath94@gmail.com 

Graph theory offers the chemist and information 
scientist with a lot of excellent tools, such as 
topological matrices, algebraic polynomials and 
topological indices (or molecular descriptors). 
Such resources create a strong link between 
chemical graphs or networks and their physical, 
chemical and biological properties. The topological 
index of a graph or network is a numeric quantity 
that characterizes the entire structure of the 
underlying graph or network. Mathematically, it is 
a function  with the property 

 if and only if  and  are 
isomorphic graphs, where  is the collection of all 
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simple connected graphs and  is the set of real 
numbers. Topological indices can be evaluated by 
their usual definitions, which are time consuming, 
while a number of indices of a certain category are 
intended to be derived. A number of algebraic 
polynomials have been implemented to overcome 
this laborious strategy. For instance, in the area of 
distance based indices, Hosoya polynomial plays a 
remarkable role. By setting the variable value 1 in 
the first derivative of this polynomial, one can 
easily obtain the Wiener index, which is the first 
topological index introduced by Wiener1 in 1947 to 
predict the boiling point of paraffin. There are 
many such tools like Schultz polynomial,2 PI 
Polynomial,3 Clar covering polynomial,4 Tutte 
polynomial5 and theta polynomial6 etc. Deutsch 
and Klavzar made significant contribution in the 
field of degree based topological indices regarding 
those tools. In 2015, they presented the M-
polynomial7 to produce a large number of 
topological indices. For study on M-polynomial 
and its applications, readers are referred to.8–12 In 
the last few years, the number of proposed 
topological indices is rapidly growing due to their 
chemical significance. Currently, researchers put 
their attention on the indices based on 
neighborhood degree sum of nodes.13–19 To make 
the computation of these types of indices easier, 
the present authors introduced a polynomial named 
as neighborhood M-polynomial20 whose role for 
neighborhood degree sum based indices is parallel 
to the role of the M-polynomial for degree based 
indices. Thus from the neighborhood M-
polynomial of a given family of graphs, its 
neighborhood degree sum based indices can be 
recovered. Sometimes the function defining a 
topological index does not allow the neighborhood 
M-polynomial to obtain topological indices. In that 
case, equation (2) can be used to get the closed 
form of the neighborhood degree sum based 
topological index. 
 The neighborhood M-polynomial of a graph  
is defined as, 

      (1) 

where  is the total count of edges  
such that . We use  for 

 in this article. Neighborhood degree 
sum based topological indices defined on edge set 
of a graph  can be expressed as: 

   

where  is the function of  used in the 
definition of neighborhood degree based indices. 
The above result can also be written as 

 .     (2) 

 Now we describe some neighborhood degree 
based topological indices. 
 The third version of Zagreb index16 is defined 
as, 
 . 

 The neighborhood second Zagreb index19 is 
defined as, 

 . 

 The neighborhood forgotten topological index19 
is defined as, 

 . 

 The neighborhood second modified Zagreb 
index20,21 is defined as, 

 . 

 The neighborhood general Randić20,21 index is 
defined as, 

 . 

 The third NDe index15 is defined as, 

 . 

 The fifth NDe index15 is defined as, 

 . 

 The neighborhood Harmonic index20,21 is 
defined as, 

   
 The neighborhood inverse sum index20,21 is 
given by 

   
 The Sanskruti index13 is defined as, 

   
 The relations of some neighborhood degree-
based topological indices with the NM-polynomial 
are shown in the Table 1. 
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Table 1 

Derivation of some neighborhood degree based topological indices 

Topological index Derivation from  

  
  
  

  
  
  
  

  
  

  
 
where,  
 

  

 
   

 

 
In recent decades, the advent of networking 

especially on computers, electrical and biological 
networks has made it easier to transfer information 
and essential products in a limited time and with 
reasonable precision. The rapid development of 
interconnected circuits has made it possible to 
create highly integrated networks. Examples of 
such network include social network, computer 
network, biological network, World Wide Web, 
ecological network, neural network etc. The 
present work deals with the neural network. A 
neural network model is constructed by a large 
amount of simple processing neuron nodes 
organized into a sequence of layers. Javaid and 
Cao22 studied first time the topological properties 
of the probabilistic neural network in terms of 
some degree-based indices in 2017. Then in 2018, 
Liu et al.23 computed some degree-based and 
distance-based indices of 3-layered probabilistic 
neural network. Javaid et al.24 investigated the 
topological indices of 4-layered probabilistic 
neural network in 2019. Some degree based indices 
of cellular neural network is studied by  
Imran et al.25 in 2019. The present authors derived 
some degree based and neighborhood degree sum 
based indices of chemical structures applied for the 
treatment of COVID-19 using M-polynomial and 

NM-polynomial approach26. In,27 the general 
Zagreb index of neural network is obtained.  
Javaid et al.28 evaluated degree-based indices of 
neural network using M-polynomial approach. The 
goal of the present work is to investigate the 
usefulness of the aforesaid indices and to compute 
the NM-polynomials of 3-layered and 4-layered 
probabilistic neural networks. Then using the 
expressions of NM-polynomials, we derive some 
neighbourhood degree sum based indices of 
aforesaid networks.  
 The rest of the work is organized as follows. 
Section 2 contains the materials and methods 
required to obtain the outcomes. In section 3, the 
applications and motivations of the work are 
described. Section 4 contains the computational 
results for the 3-layered probabilistic neural 
network. In section 5, the computational aspect of 
4-layered probabilistic neural network is described. 
The work is concluded in section 6. 

MATERIALS AND METHODS 

 The present work deals with the investigation of 
usefulness of some neighborhood degree sum 
based indices and computation of the indices for 3-
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layered and 4-layered probabilistic neural 
networks. To check the usefulness of the indices, 
octane isomer and alkanes (from butane to 2,3,3,4-
tetramethyl pentane) datasets are considered. The 
experimental data of different physico-chemical 
properties for octanes are taken from 
www.moleculardescriptors.eu/dataset/dataset.htm. 
the datas related to the alkanes are collected from 
\cite{hosa17}. The indices for the probabilistic 
neural networks are computed using NM-
polynomial. We use some calculus operators to 
recover the indices from NM-polynomial. Also we 
use the combinatorial computation, graph 
theoretical tools, and edge partition methods to get 
the outcomes. The results are illustrated 
graphically using MATLAB 2017 and Maple 
2015. 

APPLICATIONS 

 The journey of topological indices was started 
through the Wiener index1 in 1947, where the 
boiling points of the paraffins were modelled. 
After that a large number of indices have been 
defined in the literature to develop quantitative 
structure property relationship (QSPR) analysis. 
QSPR analysis is a powerful investigation for 
breaking down a molecule into a series of 
numerical values describing its relevant physico-
chemical properties and biological activities. 
Descriptors having the strongest correlation in this 
study give information about essential functional 
groups of compounds under consideration. 
Accordingly, we can regulate pharmacological 
action or physico-chemical properties of drugs by 
modifying certain groups in the structure of 

medications. It is usually very costly to test a 
compound using a wet lab, but the QSPR study 
allows that cost to be reduced. QSPR approaches 
can be used to develop models which can predict 
properties or activities of several networks. An 
efficient way of encoding structures with 
determined topological index is therefore 
necessary for the construction of accurate models. 
The indices used for the creation of model can 
offer a chance to concentrate on particular 
characteristics that account for the activity or 
property of interest in the network. The indices 
described in the Introduction section are firstly 
appeared in.13–16,19,20 The chemical applicability of 

,  , , , and  are described 
in.13-16,19 The chemical significance of rest of the 
indices is investigated in this section. In addition, 
the indices, modelling ability of which are briefly 
illustrated in,13–16,19 are explored here in details. To 
check the usefulness of a molecular descriptor, one 
should correlate the index with a standard dataset. 
Here we consider the benchmark data set of octane 
isomers. Remarkably, each index correlates well 
with at least one physico-chemical properties of 
octane isomers. The absolute correlation 
coefficients ( ) of the indices with different 
physico-chemical properties that includes entropy 
( ), acentric factor ( ), standard enthalpy of 
vaporisation ( ), enthalpy of vaporization 
( ), and heat capacity at P constant ( ) such 
that  are reported in Table 2. The well-
fitted models for each index are listed in equations 
(4)–(16). We propose to analyse the following 
linear regression model: 

        (3) 

 
Table 2 

Correlation of some indices with different properties for octane isomer. 
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where  and  are properties, intercept, 
standard error of coefficients, slope, and structure 
descriptor respectively. 
 Some statistical parameters, such as the 
standard error of the model ( ), the F-test ( ) and 

the significance F ( ), are also reported in each 
model. Using the equation (3), we have the 
following linear regression models for different 
topological indices. 

 

       (4) 

  

          (5) 

   

    (6) 

   

              (7) 

          

       (8) 

                

        (9) 

        

           (10) 

            

         (11) 

              

       (12) 

                

                                           (13) 

                

              (14) 

          

        (15) 

                

      (16) 

 
 

If we go through the models (4)–(16), several 
remarks can be drawn. The smaller the  values, 
the more confident we are regarding the regression 

equation. Among all the models, equation (14) has 
the lowest  value. The consistency of the model 
improves as the F-value increases. The models (9), 
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(12), and (14) have significant F-values. When the 
 value is less than 0.05, then the model is 

considered to be statistically reliable. In each case, 
 value is far less than 0.05. For each model, the 
 value is greater or equal to 0.9 (Table 2). Infact, 

for the model (14), it is very closed to 1. The linear 
fittings of the indices with different physico-
chemical properties are depicted in Figures 1–5. 
The solid circles in the Figures 1–5 represent data 
points and the blue lines represent the regression 
line. From Figure 3, it is clear that the data points 
are well-fitted with the linear model (14). Thus we 
can state that the model (14) is the best fitted 

compared to the other models. The correlation of 
 index with different properties for octanes is 

not satisfactory. But it yields well response for  
67 alkanes (from butane to 2,3,3,4-tetramethyl 
pentane). The absolute correlation coefficient of 

 with boiling points (bp), critical temperature 
(ct), molar volumes (mv) at 20°C, molar refractions 
(mr) at 20°C, heats of vaporization (hv) at 25°C and 
surface tensions (st) at 20°C are reported in Table 
3. The comparative correlations of different indices 
with different properties are depicted in Figure 6 
and Figure 7. 

 

 
Fig. 1 – Correlation of  with different properties for octanes. 

 

 
Fig. 2 – Correlation of and  with different properties for octanes. 

 

 
Fig. 3 – Correlation of  and  with different properties for octanes. 
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Fig. 4 – Correlation of  with different properties for octanes. 

 

 
Fig. 5 – Correlation of  with different properties for octanes. 

 
Table 3 

Correlation of  with different properties for alkanes 

 
 

 
Fig. 6 – Correlation of topological indices with different properties for octane isomers.  

To make the plotting clear, logarithm scale is used along the vertical axis. 
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Fig. 7 – Correlation of  with different properties for alkanes. 

 
 Besides the structure-property/structure-activity 
modelling, a good descriptor should discriminate 
isomers. The isomer discrimination ability of an 
index is measured by sensitivity introduced by 
Konstantinova30 and is defined by: 

            (17) 

where  and  are the total number of isomers and 
the count of isomers that cannot be discriminated by 
the descriptor , respectively. The isomer 
discrimination ability of an index is directly 
proportional to . Clearly, its maximum value is 1. 
Therefore,  plays a major role in the discriminating 
power of an index. The indices having good 
discrimination ability captures more structural 
information. The sensitivity of , , , and 

 indices for octane isomers are checked in.15,19 
They have the  values 1, 0.889, 1, and 1, 
respectively. In this article, we calculate that the   
values of , , and  are 0.944, 1, and 1, 
respectively. These results outperform the well 
established and most used degree and distance based 
indices as described in Table 4 in.15 

COMPUTATIONAL ASPECTS  
OF A 3-LAYERED PROBABILISTIC  
NEURAL NETWORK  

 The 3-layered probabilistic neural network 
consists of 3 layers of nodes. The first, second and 
third layers are known as input, hidden and output 
layers, respectively. Let, the first, second and third 
layers contain  nodes,  classes with  nodes in 
each class and  nodes, respectively. Each node of 
input layer connected with every node in hidden layer 

and each node of a class in the hidden layer is 
connected to a specific node in the output layer. 
This network is denoted as . The 
graphical representation of  is shown 
in Figure 8. We compute the -polynomial of a 
3-layered probabilistic neural network in the 
following theorem. 

Theorem 1. Let  be a  
3-layered probabilistic neural network. Then we 
have, 

 
 

Proof.  has  number 
of edges. Its edge set can be partitioned into two 
sets  and  based on the degree sum of 
neighbor of end vertices of each edge, where  

 =  
and  

 = . 
Clearly, , . 
The -polynomial of  can be obtained as 
follows. 

 

 

 
This completes the proof. 
Now using this -polynomial, we calculate 

some neighborhood degree based topological 
indices of  in the following theorem. 
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Fig. 8 – The 3-layered probabilistic neural network 

. 

 
Theorem 2. Let  be a 3-layered probabilistic 

neural network . Then we have, 
 

 
 

 
 

 

 
 

 
 

 

 
 

 

  

Proof. Let  
 

 
Then we have  

 

 
, 

, 

, 

 
, 

 
, 

 

, 
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, 

, 

. 
 

Using Table 1, we can easily obtain the 
required result. 

The surfaces related to the topological indices 
of  are plotted in Figure 9, Figure 10 
and Figure 11. 

 

 
                  (a)                                                    (b)                                                   (c) 

Fig. 9 – (a)  (b)  and (c)  index of . 
 

 
                (a)                                                    (b)                                                   (c) 

Fig. 10 – (a)  (b)  and (c)  index of . 

              (a)                                                    (b)                                                   (c) 
Fig. 11 – (a)  (b)  and (c)  index of . 
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Fig. 12 – The 4-layered probabilistic neural network . 

 

 
(a)                                                                    (b) 

Fig. 13 – The -polynomal of (a)  and (b) . 

 
 

COMPUTATIONAL ASPECTS  
OF A 4-LAYERED PROBABILISTIC 

NEURAL NETWORK  

 The 4-layered probabilistic neural network 
consists of 4 layers of nodes. The first, second, 
third and fourth layers are known as input, hidden, 
summation and output layers, respectively. Let, the 
first, second, third and fourth layers contain  
nodes,  classes with  nodes in each class,  
nodes and  node, respectively. Each node of input 
layer connected with every node in hidden layer, 
each node of a class in the hidden layer is 

connected to a specific node in the summation 
layer and all the nodes of summation layer are 
connected to the only node of output layer. We 
denote this network as . The 
graphical representation of  is 
shown in Figure 12. We compute the -
polynomial of a 4-layered probabilistic neural 
network  in the following theorem. 

Theorem 3. Let  be a 4-layered probabilistic 
neural network . Then we have, 
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Proof. The 4-layered probabilistic neural 
network  has  
number of edges. Its edge set can be partitioned 
into three sets , , and  based on the degree 
sum of neighbors of end vertices of each edge, 
where 

 

 

,  
and   
 

. Clearly 
, , and . The -

polynomial of  can be obtained as follows. 

 

 
 

  
        
 

This completes the proof. 
The NM-polynomial of two types of 

probabilistic neural networks for particular values 
of the parameters are depicted in Figure 13. 
Now using that NM-polynomial, we calculate 
some neighborhood degree sum based topological 
indices of the 4-layered probabilistic neural 
network  like theorem 2 in the 
following theorem. 

Theorem 4. Let  be a 4-layered probabilistic 
neural network . Then we have, 

 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

, 
 

. 
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                                     (a)                                                                  (b)                                                                 (c) 

Fig. 14 – (a)  (b)  and (c)  index of . 
 

          
(                                        a)                                                                      (b)                                                               (c) 

Fig. 15 – (a)  (b)  and (c)  index of . 

 

 
                             (a)                                                                      (b)                                                                    (c) 

Fig. 16 – (a)  (b)  and (c)  index of . 

 
The surfaces related to the topological indices 

of PNN(n, k, 2, 1) are plotted in Figure 14,  
Figure 15 and Figure 16. 

CONCLUSIONS 

 In this paper, we obtained some neighborhood 
degree sum based indices for two types of 

probabilistic neural networks using neighborhood 
M-polynomial. Firstly, the general form of -
polynomial for the 3-layered and 4-layered 
probabilistic neural networks are computed and 
then using those expressions, some neighborhood 
degree sum based indices are recovered. The 
usefulness of the indices is also established here. 
From the discussion in section 3, we can conclude 
that the response of  in modelling physico-
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chemical properties of octanes is the best among 
all the indices under consideration. To visualize the 
results, their graphical representations have been 
made. The results can be helpful to understand the 
topologies of the aforesaid networks. 
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