TETRAHEDRAL ANGLES OF FIVE MEMBERED RING IMINOCYCLITOLS WITH RIBITOL STEREOCHEMISTRY BEYOND THE DIHEDRAL ANGLES

 Petru FILIP ${ }^{\text {a }}$ and Robert Michael MORIARTY ${ }^{\text {b }}$
${ }^{\text {a }}$ Institute of Organic Chemistry C. D. Nenitescu, Roumanian Academy, Splaiul Independentei 202B, sect 6, Bucharest, 060023, Roumania, CP108
${ }^{\mathrm{b}}$ University of Illinois at Chicago, Department of Chemistry, Chicago, IL, 60607, S.U.A.

Received October 13, 2021

Relationships between vicinal angles, angles result from vicinal coupling constant ${ }^{3} J_{\mathrm{HH}}[\mathrm{Hz}]$, and tetrahedral angles of five membered ring iminocyclitols with ribitol stereochemistry are demonstrate with polyhedron and 3 -sphere methods. Tetrahedral angles $\varphi[\mathrm{deg}]$ and internal angles $\gamma[\mathrm{deg}]$ are calculated from ${ }^{13} \mathrm{C}-\mathrm{NMR}$, or ${ }^{1} \mathrm{H}-\mathrm{NMR}$ chemical shift $\delta[\mathrm{ppm}]$ in case of heteroatom, with energy-graph theory approach. The vicinal coupling constant can be calculated from one atom of carbon chemical shift $\delta_{\mathrm{C}_{n}}[\mathrm{ppm}]$, and also the corresponding dihedral angle under 3-sphere approach.

$$
\begin{gathered}
\tan (\varphi / 2)=1 / \mathrm{E}^{\mathrm{n}}=2 \sin (\gamma / 2) \\
\theta_{\mathrm{HnHn}+1}=\sin ^{-1} \cos \phi \\
\phi=\mathrm{f}(\varphi, \gamma) \\
{ }^{3} J_{\mathrm{HH}}=(\phi)^{1 / 2} / \mathrm{n}
\end{gathered}
$$

$\mathrm{n}=1$ trans-aa, $\mathrm{n}=2$ cis, trans-ee

INTRODUCTION

The vicinal angle $\phi[\mathrm{deg}]$ is in close relationship with the corresponding dihedral angle $\theta_{\mathrm{HnHn}+1}[\mathrm{deg}]$ under 3 -sphere approach, and with tetrahedral angle $\varphi[\operatorname{deg}]$ under polyhedral approach. ${ }^{1,2}$ Dihedral angle and the vicinal angle under 3sphere approach are angles at intersection of two intersecting discs (Fig. 1), the vicinal angle resulting from the vicinal constant coupling ${ }^{3} J_{\mathrm{HH}}[\mathrm{Hz}]$. A method in three steps: 1. prediction of the dihedral angle only from vicinal coupling constan, ${ }^{3}$ 2. calculation of the angle of set A with manifold equation from the differences between
two atoms of carbon $\delta_{\mathrm{CnCn}+1}[\mathrm{ppm}]$ and/or proton chemical shift $\delta_{\mathrm{HnHn}+1}[\mathrm{ppm}]$, 3. six dihedral angles with cis, trans stereochemistry under $+/-60[\mathrm{deg}]$ rule drowned on three concentric cons translated in 2D, gives set A. From set A are builds six sets angles on two units or seven sets angles on one unit. Hypersphere trigonometric equations giving the right sign and stereochemistry. ${ }^{4,5}$

The 2D conic representation of 3 -sphere approach with angle under $+/-60[\mathrm{deg}]$ rule, resulted from manifold equation $[4,5]$ must contain the tetrahedral angle around the dihedral angle set on unit U or S .

Intersecting disks
${ }^{3} J_{\mathrm{HnHn}+1}=\mathrm{f}(\phi)[\mathrm{Hz}]$

cis-ea
cis-ae
trans-ee ${ }^{3,2}$

trans-ee ${ }^{4,1}$
trans-aa ${ }^{6}$
trans-aa ${ }^{5,2}$

φ tetrahedral angle
γ internal angle
$\theta_{\mathrm{HnHn}+1}=\mathrm{f}(\varphi, \gamma)[\mathrm{deg}]$

Fig. 1 - Relationships between dihedral angles $\theta_{\mathrm{HH}}[\mathrm{deg}]$ - vicinal angles $\phi[\mathrm{deg}]$ and tetrahedral angles $\varphi[\mathrm{deg}]$ - internal angles $\gamma[\mathrm{deg}]$ of five membered ring.

[^0]

1

2

4

5

Fig. 2 - Five membered ring iminocyclitols with α-D-ribitol (1-3) and β-L-ribitol $(\mathbf{4}, \mathbf{5})$ stereochemistry.

In this paper our aim is to calculate the vicinal coupling constant ${ }^{3} J_{\mathrm{HH}}[\mathrm{Hz}]$ of five membered ring (Fig. 1) only from one atom of carbon chemical shift $\delta_{\mathrm{Cn}}[\mathrm{ppm}]$, the vicinal angles $\phi[\mathrm{deg}]$ with their corresponding dihedral angles $\theta_{\mathrm{HH}}[\mathrm{deg}]$ and tetrahedral angles $\varphi[\mathrm{deg}]$.

DISCUSSION

Euler character of the energy-graph theory ensures the calculation of the tetrahedral angles $\varphi[\mathrm{deg}]$ and internal angles $\gamma[\mathrm{deg}]$ of the five membered ring iminocyclitols (Fig. 2), with α-Dribitol ($\mathbf{1 - 3}$) and β-L-ribitol $(\mathbf{4}, \mathbf{5})$ stereochemistry, ${ }^{6}$ from ${ }^{13} \mathrm{C}$-NMR carbon chemical shift, or ${ }^{1} \mathrm{H}$-NMR in case of heteroatom. Euler's polygon division applied on iminocyclitols 1-5 transforms the spherical coordinate on pentagonal surface, in fact polyhedral with Euclidean pentagons or triangles surfaces. ${ }^{\text {? }}$

The dihedral angle of polyhedral (dodecahedron eq. 1, icosahedron eq. 2) ${ }^{7}$ ensures a perfect conic distribution of the tetrahedral angle (φ) and internal angle (γ) of five membered ring under 180[deg] and tetrahedral rule, after replacing the golden ratio $(\mathrm{A}=1.618033952)$ with inverse of energy [J/molix 10^{6}] [8] calculated from carbon chemical shift in polyhedral equations (eq. 3). ${ }^{1,2}$
Eq. 1: Dodecahedron: $\tan \left(\mathrm{D}^{\mathrm{D}} / 2\right)=\mathrm{A}=2 \sin (\mathrm{X} / 2)$,
Eq. 2: Icosahedron: $\tan \left(\mathrm{D}^{\mathrm{I}} / 2\right)=(\mathrm{A})^{2}=2 \sin (\mathrm{X} / 2)$,
Eq. 3: Polyhedral: $\tan (\varphi / 2)=1 / \mathrm{E}^{\mathrm{n}}=2 \sin (\gamma / 2)$,
where: dihedral angle of polyhedral, dodecahedron $\mathrm{D}^{\mathrm{D}}: \quad 116.56506[\mathrm{deg}]$, icosahedron $\quad \mathrm{D}^{\mathrm{I}}$: 138.189685[deg], golden ratio $\mathrm{A}=1.618033952$, $\mathrm{E}^{\mathrm{n}}-$ energy[J/molx $\left.10^{6}\right], \mathrm{n}=1,2, \varphi$ - tetrahedral angle[deg], γ - internal angle[deg].

In Table 1 are presented angles calculated from carbon chemical shift with polyhedron 1-3 and energy equations 4a-c for iminocyclitols 1-5.

$$
\text { Eq. } 4 \mathrm{a}-\mathrm{c}: \cos \theta^{\mathrm{n}} / \mathrm{m}=1 / \mathrm{E}^{\mathrm{n}},
$$

where: E^{n} - energy[J/molix $\left.10^{-6}\right], \mathrm{n}=1,1 / 2,2, \mathrm{~m}=1$ or $2, \theta^{\mathrm{n}}=\varphi$ or γ, φ-angle between two equivalent
orbitals - tetrahedral angle, [deg], γ - internal angle[deg], $180-\gamma=\varphi$.

Three sets of six angles $\theta^{\mathrm{n}}(\mathrm{n}=1-6)$ result from $1 / \mathrm{E}, 1 / \mathrm{E}^{1 / 2}, 1 \mathrm{E}^{2}[8]$, with first three angles internal $\left(\gamma=\theta^{1-3}=60-89[\mathrm{deg}]\right)$ and last three angles tetrahedral $\left(\varphi=\theta^{4-6}=119-90[\mathrm{deg}]\right)$, giving information about the required tetrahedral ($\varphi_{\mathrm{Cn}}, \mathrm{n}=$ $1-5)$, dihedral ($\theta_{\mathrm{HnHn}+1}$), vicinal angles (ϕ), and no at list about the vicinal coupling constant ${ }^{3} J_{\mathrm{HnHn}+1}$.

The vicinal angle or the cis ${ }^{6,1}$ dihedral angle with positive sign (Tables 1,2) result from set $1 / \mathrm{E}^{2}$ from the difference between θ^{6} and $90[\mathrm{deg}]$, multiplied by 1 (Table 1 , entry $1: \mathrm{C}_{1} \mathbf{- 1}$), 2 (entry 3 : $\mathrm{C}_{3}-\mathbf{1}$, entry 19: $\mathrm{C}_{1}-\mathbf{5}$) or 4 (entry 20: $\mathrm{C}_{2}-\mathbf{5}$), and in case of negative dihedral angle from angles θ^{46} of set $1 / \mathrm{E}^{\mathrm{n}}$ having θ^{6} dodecahedron, or transforming the angle θ^{6} of set $1 / \mathrm{E}^{\mathrm{n}}$ in dodecahedron angle ($\mathrm{C}_{1}-$ 4: $104.892-115.526-118.823[\mathrm{deg}], \mathrm{C}_{1}-\mathbf{3}$: 104.795-115.487-118.89[deg]). In case of $c i s^{5,2}$ dihedral angle with positive sign, the first angle of the set $1 / \mathrm{E}^{\mathrm{n}}$ is equal with ϕ, if θ^{6} is dodecahedron, or transformed into dodecahedron. The vicinal angle of the trans-ee stereochemistry results from $\phi_{1} / 2$ of set C, set results under $+/-60[\mathrm{deg}]$ rule from θ^{6} of set $1 / \mathrm{E}^{2}$, and the vicinal angle of the trans-a $a a^{6,1}$ stereochemistry from the θ^{1-2} of set $1 / \mathrm{E}^{2}$, or or $\theta=150+\left(\theta^{6}-90\right)$.

Once the vicinal angle ϕ, or the dihedral angle $\theta_{\mathrm{HnHn}+1}$, is established with trigonometric equation will be calculated the corresponding dihedral angle or the vicinal angle. The vicinal coupling constant ${ }^{3} J_{\mathrm{HnHn+1}}[\mathrm{~Hz}]$ can be calculated from the vicinal angle $\left(\phi[\operatorname{deg}]=\theta^{n}\right)$ with eq. 5 , and with trigonometric equation 6 the corresponding dihedral angle. ${ }^{3-5}$
Eq. $5:{ }^{3} J_{\mathrm{HH}}=\left(\theta^{\mathrm{n}}\right)^{1 / 2} / \mathrm{n}$, with cis: $\mathrm{n}=2$, trans: $\mathrm{n}=1$.
Eq. 6: $\theta_{\mathrm{HnHn}+1}=\sin ^{-1} \cos (\phi)$, with $\phi=\mathrm{f}\left(\theta^{\mathrm{n}}\right), \mathrm{n}=1-6$.
Dihedral angle $\theta_{\mathrm{HnHn}+1}$ can be calculated from C_{n} or $\mathrm{C}_{\mathrm{n}+1}$, the representative value remains one with the calculated vicinal coupling constant almost equal with the recorded one.

Table 1
Tetrahedral angle $\varphi[\mathrm{deg}]$, vicinal angle $\Phi[\mathrm{deg}]$, dihedral angle $\theta_{\mathrm{HH}}[\mathrm{deg}]$ and vicinal coupling constant ${ }^{3} J_{\mathrm{HH}}[\mathrm{Hz}]$ calculated from carbon chemical shift with polyhedron equations 1-3

	R	C_{n}	$\begin{gathered} \delta_{\mathrm{Cn}}{ }^{\mathrm{a}} \\ {[\mathrm{ppm}]} \end{gathered}$	$\begin{gathered} \mathrm{E}^{\mathrm{b}} \\ {[\mathrm{~J} / \mathrm{moli}]} \end{gathered}$	$\begin{gathered} \hline \varphi^{1 / E} \\ {[\mathrm{deg}]} \end{gathered}$	$\begin{aligned} & \hline \varphi^{1 E \mathrm{E} / 2} \\ & {[\mathrm{deg}]} \end{aligned}$	$\begin{aligned} & \hline \varphi^{1 / E 2} \\ & {[\mathrm{deg}]} \end{aligned}$	$\begin{gathered} \hline \Phi \\ {[\mathrm{deg}]} \end{gathered}$	$\begin{aligned} & { }^{3} \mathrm{JHH}_{\mathrm{H}} \\ & {[\mathrm{~Hz}]} \end{aligned}$	$\begin{gathered} \hline \theta_{\mathrm{HH}} \\ {[\mathrm{deg}]} \end{gathered}$	$\begin{gathered} { }^{3} J_{\mathrm{HH}}{ }^{\text {exp }} \\ {[\mathrm{Hz}]} \end{gathered}$
1.	1	C_{1}	55.8	1.670	106.44	101.38	$\begin{array}{r} 111.01 \\ 95.97 \end{array}$	$\begin{array}{r} 68.99 \\ 117.51 \\ 116.05 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{H}_{1} \mathrm{H}_{2} 4.15 \\ & \mathrm{H}_{2} \mathrm{H}_{3} 5.4 \\ & \mathrm{H}_{2} \mathrm{H}_{3} 5.38 \\ & \hline \end{aligned}$	$\begin{array}{r} 21.00 \\ -27.51 \\ -26.05 \\ \hline \end{array}$	$\mathrm{H}_{1} \mathrm{H}_{2} 4.1$
2.		C_{2}	83.5	2.499	113.58	101.52	$\begin{array}{r} 99.21 \\ 108.42 \\ \hline \end{array}$	$\begin{array}{r} \hline 66.42 \\ 118.80 \\ \hline \end{array}$	$\begin{array}{r} \hline \mathrm{H}_{1} \mathrm{H}_{2} 4.07 \\ \mathrm{H}_{2} \mathrm{H}_{3} 5.44 \\ \hline \end{array}$	$\begin{array}{r} 23.58 \\ -28.80 \\ \hline \end{array}$	$\mathrm{H}_{2} \mathrm{H}_{3} 5.4$
3.		C_{3}	84.3	2.523	113.34	101.96	$\begin{array}{r} 99.03 \\ 108.07 \\ \hline \end{array}$	$\begin{aligned} & 119.59^{\mathrm{c}} \\ & 118.89^{\mathrm{d}} \end{aligned}$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{H}_{3} 5.46 \\ & \mathrm{H}_{2} \mathrm{H}_{3} 5.45 \\ & \hline \end{aligned}$	$\begin{array}{r} -29.59 \\ -28.89 \\ \hline \end{array}$	
4.		C_{4}	65.9	1.972	119.07	90.78	$\begin{aligned} & 104.89 \\ & 119.78 \end{aligned}$	$\begin{array}{r} \hline 119.07 \\ 116.45^{\mathrm{d}} \\ 0.23 \\ 0.798 \end{array}$	$\begin{aligned} & \hline \mathrm{H}_{2} \mathrm{H}_{3} 5.45 \\ & \mathrm{H}_{2} \mathrm{H}_{3} 5.39 \\ & \mathrm{H}_{3} \mathrm{H}_{4} 0.21^{\mathrm{f}} \\ & \mathrm{H}_{3} \mathrm{H}_{4} 0.44 \end{aligned}$	$\begin{aligned} & \hline-29.07 \\ & -26.45 \\ & -89.78 \\ & -89.20 \\ & \hline \end{aligned}$	$\mathrm{H}_{3} \mathrm{H}_{4} \mathrm{O}$
5.		NH	2.64	$\begin{aligned} & \hline 0.421 \\ & 2.372 \end{aligned}$	114.93	99.04	$\begin{array}{r} \hline 100.23 \\ 110.46 \\ 114.93^{\text {e }} \end{array}$	-	-	-	-
6.	2	C_{1}	57.4	1.718	108.81	99.44	$\begin{aligned} & 109.80 \\ & 100.79 \\ & \hline \end{aligned}$	$\begin{array}{r} 39.60 \\ 63.17 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{H}_{1} \mathrm{H}_{2} 3.14 \\ & \mathrm{H}_{2} \mathrm{H}_{3} 3.97 \end{aligned}$	$\begin{gathered} 50.39^{c} \\ 26.82 \\ \hline \end{gathered}$	$\mathrm{H}_{1} \mathrm{H}_{2} 3.1$
7.		C_{2}	71.5	2.140	$\begin{aligned} & \hline 117.87 \\ & 111.42 \end{aligned}$	93.75	$\begin{aligned} & \hline 102.61 \\ & 115.22 \end{aligned}$	$\begin{array}{r} \hline 39.85^{\mathrm{c}} \\ 61.93 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{H}_{1} \mathrm{H}_{2} 3.15 \\ & \mathrm{H}_{2} \mathrm{H}_{3} 3.9 \end{aligned}$	$\begin{aligned} & \hline 50.14 \\ & 28.07 \\ & \hline \end{aligned}$	$\mathrm{H}_{2} \mathrm{H}_{3} 3.9$
8.		C_{3}	71.7	2.146	$\begin{aligned} & \hline 117.77 \\ & 111.07 \\ & \hline \end{aligned}$	93.90	$\begin{aligned} & \hline 102.53 \\ & 115.07 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 61.62^{\mathrm{g}} \\ 77.46 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{H}_{2} \mathrm{H}_{3} 3.92 \\ & \mathrm{H}_{3} \mathrm{H}_{4} 8.80 \\ & \hline \end{aligned}$	$\begin{array}{r} 28.36 \\ -167.46^{\mathrm{h}} \\ \hline \end{array}$	
9.		C_{4}	66.8	1.999	119.98	90.01	$\begin{aligned} & \hline 104.48 \\ & 115.88 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 60.01 \\ & 78.46 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{H}_{2} \mathrm{H}_{3} 3.89 \\ & \mathrm{H}_{3} \mathrm{H}_{4} 8.85 \\ & \hline \end{aligned}$	$\begin{array}{r} 29.98 \\ -168.46^{\mathrm{h}} \\ \hline \end{array}$	$\mathrm{H}_{3} \mathrm{H}_{4} 8.8$
10.		NH	3.33	$\begin{aligned} & \hline 0.531 \\ & 1.881 \end{aligned}$	115.77	93.622	$\begin{array}{r} \hline 106.41 \\ 116.04^{\mathrm{d}} \\ 114.34 \\ 115.77^{\mathrm{e}} \\ \hline \end{array}$	-	-	-	-
11.	3	C_{1}	63.7	1.906	116.73	92.80	$\begin{aligned} & \hline 105.96 \\ & 116.13 \end{aligned}$	$\begin{array}{r} 92.73 \\ 107.90 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{H}_{1} \mathrm{H}_{2} 4.81 \\ & \mathrm{H}_{2} \mathrm{H}_{3} 5.19 \\ & \hline \end{aligned}$	$\begin{array}{r} -2.80 \\ -17.90 \\ \hline \end{array}$	$\mathrm{H}_{1} \mathrm{H}_{2} 4.8$
12.		C_{2}	72.5	2.170	$\begin{aligned} & 117.43 \\ & 109.75 \end{aligned}$	94.49	$\begin{aligned} & \hline 102.26 \\ & 114.52 \end{aligned}$	$\begin{array}{r} 92.16 \\ 107.65 \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{H}_{1} \mathrm{H}_{2} 4.86 \\ \mathrm{H}_{2} \mathrm{H}_{3} 5.18 \end{gathered}$	$\begin{array}{r} -2.16 \\ -17.65 \\ \hline \end{array}$	$\mathrm{H}_{2} \mathrm{H}_{3} 5.2$
13.		C_{3}	74.0	2.214	$\begin{aligned} & \hline 116.83 \\ & 107.35 \\ & \hline \end{aligned}$	95.56	$\begin{aligned} & \hline 101.76 \\ & 113.52 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 108.18 \\ 3.58 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{H}_{3} 5.2 \\ & \mathrm{H}_{3} \mathrm{H}_{4} 0.95 \\ & \hline \end{aligned}$	$\begin{gathered} -18.18 \\ -86.41^{\mathrm{f}} \\ \hline \end{gathered}$	
14.		C_{4}	69.3	2.074	$\begin{aligned} & 118.82 \\ & 115.28 \\ & \hline \end{aligned}$	92.05	$\begin{aligned} & \hline 103.43 \\ & 116.87 \\ & \hline \end{aligned}$	$\begin{array}{r} 107.56 \\ 3.12 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{H}_{2} \mathrm{H}_{3} 5.18 \\ & \mathrm{H}_{3} \mathrm{H}_{4} 0.88 \\ & \hline \end{aligned}$	$\begin{array}{r} -17.56 \\ -86.87^{\mathrm{f}} \\ \hline \end{array}$	$\mathrm{H}_{3} \mathrm{H}_{4} \mathrm{O}$
15.	4	C_{1}	68.4	2.047	$\begin{aligned} & \hline 119.23 \\ & 116.95 \end{aligned}$	91.32	$\begin{aligned} & \hline 103.80 \\ & 117.60 \end{aligned}$	$\begin{array}{r} 92.02 \\ 108.49 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{H}_{1} \mathrm{H}_{2} 4.79 \\ & \mathrm{H}_{2} \mathrm{H}_{3} 5.20 \\ & \hline \end{aligned}$	$\begin{array}{r} -2.02 \\ -18.49 \end{array}$	$\mathrm{H}_{1} \mathrm{H}_{2} 4.8$
16.		C_{2}	71.1	2.152	$\begin{aligned} & 117.68 \\ & 110.75 \\ & \hline \end{aligned}$	94.05	$\begin{aligned} & \hline 102.46 \\ & 114.93 \\ & \hline \end{aligned}$	$\begin{array}{r} 91.95 \\ 107.42 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{H}_{1} \mathrm{H}_{2} 4.79 \\ & \mathrm{H}_{2} \mathrm{H}_{3} 5.18 \end{aligned}$	$\begin{array}{r} -1.956 \\ -17.42 \\ \hline \end{array}$	$\mathrm{H}_{2} \mathrm{H}_{3} 5.2$
17.		C_{3}	72.7	2.176	$\begin{aligned} & 117.36 \\ & 109.43 \end{aligned}$	94.64	$\begin{aligned} & 102.19 \\ & 114.38 \end{aligned}$	$\begin{array}{r} 108.39 \\ 4.10 \end{array}$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{H}_{3} 5.20 \\ & \mathrm{H}_{3} \mathrm{H}_{4} 1.01 \end{aligned}$	$\begin{array}{r} -18.39 \\ 85.9^{f} \end{array}$	
18.		C_{4}	70.9	2.122	$\begin{aligned} & \hline 118.11 \\ & 112.45 \\ & \hline \end{aligned}$	93.30	$\begin{aligned} & 102.82 \\ & 115.65 \\ & \hline \end{aligned}$	$\begin{array}{r} 108.70 \\ 4.34 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{H}_{2} \mathrm{H}_{3} 5.21 \\ & \mathrm{H}_{3} \mathrm{H}_{4} 1.04 \\ & \hline \end{aligned}$	$\begin{array}{r} -18.70 \\ 85.65^{\mathrm{f}} \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{H}_{3} \mathrm{H}_{4} \\ 0 \\ \hline \end{gathered}$
19.	5	C_{1}	63.3	1.894	116.28	93.185	$\begin{array}{r} 106.17 \\ 115.302 \\ \hline \end{array}$	$\begin{aligned} & \hline 32.34^{\mathrm{c}} \\ & 52.57^{\mathrm{i}} \\ & \hline \end{aligned}$	$\begin{array}{ll} \hline \mathrm{H}_{1} \mathrm{H}_{2} & 2.84 \\ \mathrm{H}_{2} \mathrm{H}_{3} & 3.62 \end{array}$	$\begin{aligned} & \hline 57.65 \\ & 37.42 \end{aligned}$	$\mathrm{H}_{1} \mathrm{H}_{2} 2.8$
20.		C_{2}	72.1	2.158	$\begin{aligned} & 117.60 \\ & 110.41 \end{aligned}$	94.20	$\begin{array}{r} 102.39 \\ 114.797 \end{array}$	$\begin{array}{r} 34.79 \\ 51.29^{\text {c }} \end{array}$	$\begin{gathered} \mathrm{H}_{1} \mathrm{H}_{2} 2.94 \\ \mathrm{H}_{2} \mathrm{H}_{3} 3.58 \end{gathered}$	$\begin{aligned} & 55.21^{1} \\ & 38.70 \end{aligned}$	$\mathrm{H}_{2} \mathrm{H}_{3} 3.6$
21.		C_{3}	73.4	2.929	$\begin{array}{r} 109.95 \\ 100.17 \\ \hline \end{array}$	108.50	$\begin{array}{r} 96.689 \\ 103.379 \\ \hline \end{array}$	$\begin{aligned} & 50.09 \\ & 76.09 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{H}_{3} 3.53 \\ & \mathrm{H}_{3} \mathrm{H}_{4} 8.72 \\ & \hline \end{aligned}$	$\begin{array}{r} 39.91^{\mathrm{i}} \\ 166.09^{\mathrm{h}} \\ \hline \end{array}$	
22.		C_{4}	63.9	1.912	116.95	92.62	$\begin{array}{r} 105.86 \\ 116.544 \end{array}$	$\begin{aligned} & 51.57 \\ & 75.86 \\ & 78.20 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{H}_{3} 3.59 \\ & \mathrm{H}_{3} \mathrm{H}_{4} 8.7 \\ & \mathrm{H}_{3} \mathrm{H}_{4} 8.8 \\ & \hline \end{aligned}$	$\begin{array}{r} 38.43^{\mathrm{j}} \\ 165.86^{\mathrm{h}} \\ 168.20^{\mathrm{h}} \\ \hline \end{array}$	$\mathrm{H}_{3} \mathrm{H}_{4} 8.8{ }^{\text {k }}$

a. $\delta[\mathrm{ppm}] 13 \mathrm{C}-\mathrm{NMR}, 75 \mathrm{MHz}, 1 \mathrm{H}-\mathrm{NMR} 400 \mathrm{MHz}: \mathbf{1}, \mathbf{3}, 4-\mathrm{CDCl}_{3}, \mathbf{2}-\mathrm{D}_{2} \mathrm{O}, \mathbf{5}-\mathrm{CD}_{3} \mathrm{OD} ; \mathrm{b} . \mathrm{E}=\delta_{\mathrm{Cn}} \mathrm{x} \omega_{\mathrm{C}} \mathrm{xhxN} \mathrm{N}_{\mathrm{A}}\left[\mathrm{J} / \mathrm{molix}^{2} 0^{6}\right], \delta_{\mathrm{Cn}}-$ carbon chemical shift $[\mathrm{ppm}], \omega_{\mathrm{C}}$ - Larmore frequency $[\mathrm{MHz}], \mathrm{h}=6.626070080 \times 10^{-34}[\mathrm{Jxs}], \mathrm{N}_{\mathrm{A}}=0.023 \times 10^{23}\left[\mathrm{moli}^{-1}\right] ; \mathrm{c} . \theta$ or $\phi=\mathrm{nx}\left(90-\theta^{6}\right)$, $\mathrm{n}=2$, 4 ; d. eq. 1 with $\theta^{6}=\gamma$; e. $\varphi=\mathrm{f}\left(1 / \mathrm{E}^{\mathrm{n}}\right)$; f. $\phi_{1} / 2$ of set C result from θ^{6} [deg] under $+/-60[\mathrm{deg}]$ rule; g. eq. c applied on set $1 / \mathrm{E}^{1 / 2}$; h. trans $-a a^{6,1}-\theta^{1-3}=\phi$ or $\theta=150+\left(\theta^{6}-90\right)$, i. eq. c applied on set $1 / \mathrm{E}, \mathrm{j} .1 / \mathrm{E}$: θ^{6} under eq. 3 gives an angle of 109.21 [deg], then is applied eq.c, k . in L-series trans $-\mathrm{H}_{3} \mathrm{H}_{4}$ has positive sign, relative to D -series with negative sign.

Table 2
Tetrahedral approach: 2D-Conic representation of the internal angles θ^{1-3} and tetrahedral angles θ^{4-6}, in close relationship with vicinal ϕ and dihedral angles $\theta_{\mathrm{HH}}[\mathrm{deg}]$. 3 -Sphere approach: sets $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and relationships between φ and $\theta_{\mathrm{HH}}[\mathrm{deg}]$

Entry	$1 / \mathrm{E}^{\mathrm{n}}$	1/E	$1 / \mathrm{E}^{1 / 2}$	1/E ${ }^{2}$	1/E	$1 / \mathrm{E}^{1 / 2}$	1/E ${ }^{2}$
1.	θ^{n} [deg]	$\mathrm{C}_{1}-1$			$\mathrm{C}_{1}-2$		
2.	$\theta^{180-D "}$						61.20
	$\theta^{180-\mathrm{D}}$	63.95		62.488	61.72		64.55
	θ^{1}	73.557	78.611	68.992	66.415	78.475	75.304
	θ^{2}	75.911	77.808	74.141	73.12	77.75	78.601
	θ^{3}	79.730	76.569	82.878	84.789	76.650	80.788
	θ^{4}	100.269	101.388	97.121	95.210	101.524	99.211
	θ^{5}	104.088	102.191	105.859	106.210	102.242	101.398
	θ^{6}	106.442	103.430	111.007	113.879	103.349	104.695
	$\theta^{\mathrm{D}^{\prime}}$	$116.05^{\text {a }}$		$117.511^{\text {a }}$	$118.275^{\text {a }}$		$115.453^{\text {a }}$
	$\theta^{\text {D }}$						$118.803^{\text {a }}$
3.	$\begin{gathered} \hline \mathrm{H}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}+1} \\ { }^{3} J_{\mathrm{HH}}[\mathrm{~Hz}] \\ \phi \quad[\mathrm{deg}] \\ \theta_{\mathrm{HH}}[\mathrm{deg}] \end{gathered}$	$\begin{aligned} & \mathrm{H}_{1} \mathrm{H}_{2} 4.15,68.99,21.006 \\ & \text { cis }^{6,1}-\theta_{\mathrm{HH}}=111.007-90=21.007 \\ & \mathrm{H}_{2} \mathrm{H}_{3} 5.4,117.51,-27.51 \end{aligned}$			$\begin{aligned} & \mathrm{H}_{1} \mathrm{H}_{2} 4.07,66.42,23.58 \\ & \phi=113.879-90=66.42=\theta^{1} \\ & \mathrm{H}_{2} \mathrm{H}_{3} 5.44,118.80,-28.80 \end{aligned}$		
4.	$\theta^{\text {nN }}$	Set A	Set B	Set C	Set A	Set B	Set C
5.	$\theta^{\text {IN }}$	8.993	21.0064	17.987	20.788	9.211	18.423
	$\theta^{2 N}$	51.006	38.9935	42.012	39.211	50.788	41.576
	$\theta^{3 \mathrm{~N}}$	68.993	81.0064	77.987	80.788	69.211	78.423
	$\theta^{4 N}$	111.006	98.9935	102.012	99.211	110.788	101.576
	$\theta^{5 N}$	128.993	141.006	137.987	140.788	129.211	138.423
	$\theta^{6 \mathrm{~N}}$	171.006	158.993	162.012	159.211	170.788	161.576
	ϕ_{2}	17.987	42.012	35.975	41.576	18.423	36.847
	$\phi_{1} / 2$	21.006	8.993	12.012	9.211	20.788	11.576
6.	$\begin{aligned} & \varphi=\mathrm{f}(\theta, \phi) \\ & \theta=\mathrm{f}(\phi) \end{aligned}$	$\begin{aligned} & \cos ^{-1} \sin 111.006=21.0064 \\ & \sin ^{-1} \cos 21.0064=68.993,4.15[\mathrm{~Hz}] \end{aligned}$			$\begin{aligned} & \hline \cos ^{-1} \sin 99.2118=9.2118^{\mathrm{b}} \\ & \sin ^{-1} \cos 69.2118=20.788,4.15[\mathrm{~Hz}] \end{aligned}$		
7.	θ^{n} [deg]	C_{2}-2			$\mathrm{C}_{4}-4$		
8.	$\theta^{180-D^{\prime \prime}}$						
	$\theta^{180-D^{\prime}}$	62.36			70.78		
	θ^{1}	68.574	64.537	64.778	63.044	71.80	74.136
	θ^{2}	73.976	72.368	72.464	71.766	80.91	76.132
	θ^{3}	83.182	86.245	86.055	87.442	87.382	79.352
	θ^{4}	96.817	93.754	93.944	92.557	92.618	100.647
	θ^{5}	106.023	107.631	107.535	108.233	99.09	103.867
	θ^{6}	111.425	115.462	115.221	116.955	108.20	105.863
	θ^{D}	$117.856^{\text {a }}$			109.22		
	$\theta^{\mathrm{D}}{ }^{\prime \prime}$						
	θ^{4}		101.380	101.814			
	θ^{5}		103.435	103.176			
	θ^{6}		104.724	104.036			
9.	$\begin{gathered} \hline \mathrm{H}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}+1} \\ { }^{3} J_{\mathrm{HH}}[\mathrm{~Hz}] \\ \phi[\mathrm{deg}] \\ \theta_{\mathrm{HH}}[\mathrm{deg}] \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{H}_{1} \mathrm{H}_{2} 3.12,39.07,50.925 \\ & \mathrm{cis}^{5,2}-\theta_{\mathrm{HH}}=2 \mathrm{x}(115.46-90)=50.9 \\ & \mathrm{H}_{2} \mathrm{H}_{3} 3.89,60.55,29.44 \\ & c i s^{6,1}-\theta_{\mathrm{HH}}=2 \mathrm{x}(104.72-90)=29.44 \end{aligned}$			$\begin{aligned} & \mathrm{H}_{2} \mathrm{H}_{3} 5.4,117.51,-27.51 \\ & \text { cis }_{5,2}-\theta_{\mathrm{HH}}=2 \mathrm{x}(109.22-90)=38.43 \\ & \mathrm{H}_{3} \mathrm{H}_{4} 8.8,77.44,12.56,167.44 \\ & \text { trans }^{6,1}-\theta_{\mathrm{HH}}=108.2-90=18.20,168.2 \end{aligned}$		

a. eq. 1 with $\theta^{6}=\gamma$, b. $\phi=60-\phi_{1} / 2$.

Tetrahedral angles of β-D-ribofuranoside have been determined with X -ray and neutron diffraction crystal structure in comparation with B3LYP, ${ }^{9}$ resulting comparative values with the tetrahedral angles at $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$, but no at list comparative value with the total sum of the five tetrahedral angles lower as 540[deg], explained as defect 7 on polyhedral surface. The angles of the crystal natural pyrite are $106.6,102.6,102.6$,
106.6, $121.6[\mathrm{deg}]$, totally $540[\mathrm{deg}] .{ }^{7}$ The conformation of the iminocyclitols $\mathbf{1 - 5}$ change the values of the tetrahedral angles relative to regular pentagon. The differences between the angles calculated at $\mathrm{C}_{1}-\mathrm{C}_{4}$ highlighted major change, the values of energy in $\mathrm{J} / \mathrm{molix} 10^{6}$ varies between the 1.6-2.5, from dodecahedron (eq. 1) to icosahedron (eq. 2). For example: 1.6 corresponding to tetrahedral angles of $111.01[\mathrm{deg}], \quad 1.97$ to
$104.8[\mathrm{deg}]$ and $2.14-2.5$ to $102.6-99.03[\mathrm{deg}]$ (Table 1).

In Table 2 are presented few representative examples for the calculation of the vicinal coupling constant ${ }^{3} J_{\mathrm{HnHn}+1}[\mathrm{~Hz}]$ from sets $1 / \mathrm{E}, 1 / \mathrm{E}^{1 / 2}, 1 / \mathrm{E}^{2}$. The values of the vicinal coupling constant calculated for an angle $\mathrm{C}_{1} \mathbf{- 1}$ of 106.44 [deg] (set $1 / \mathrm{E}$) or $111.006[\mathrm{deg}]$ (set $1 / \mathrm{E}^{2}$) and $106.478[\mathrm{deg}]$ (result from 95.971[deg]) apparently are not significative, $4.28[\mathrm{~Hz}]$ relative to $4.15[\mathrm{~Hz}]$, but in case of $111.006[\mathrm{deg}]$ the calculated dihedral angle (eq. 7,8) has value near to predicted one.

The dihedral angles $\left(\theta_{\mathrm{HH}}=2 \mathrm{x}\left(\theta^{6}-90\right)\right.$) result from set $1 / E^{1 / 2}$ of $C_{1}, C_{2}, C_{3}-\mathbf{1}$ are almost equals with the predicted dihedral angles in case of tetrahedral angles $101.38,101.524,101.968[\mathrm{deg}]$. The main question, are tetrahedral angles at C_{2} and $\mathrm{C}_{3}-\mathbf{1} 99.21$ and 99.03 [deg] or 101.52 and $101.96[\mathrm{deg}]$. For a vicinal coupling constant of $4.1[\mathrm{~Hz}]$ the calculated tetrahedral angles are $111.0[\mathrm{~Hz}]$ at C_{1} and $99.2[\mathrm{~Hz}]$ and C_{2} (Table 2, entry 6).
Eq. 7: $\cos ^{-1} \sin \varphi=\theta_{\mathrm{HnHn}+1}$, Eq. 8: $\sin ^{-1} \cos \theta_{\mathrm{HnHn}+1}=\phi$.
The dihedral angle $\theta_{\mathrm{H} 1 \mathrm{H} 2}$ calculated from tetrahedral angle $\mathrm{C}_{2} \mathbf{- 1}$ of $99.211[\mathrm{deg}]$ is smaller with 0.22 [deg], and in eq. 7 instead of $\theta_{\mathrm{HnHn}+1}$ result $\phi_{1} / 2$ of set A . The algebraic angle ϕ for an angle with cis 6,1 stereochemistry is equal with $60+\phi_{1} / 2$ (Eq. 9, 10).

$$
\text { Eq. 9: } \cos ^{-1} \sin \varphi=\phi_{1} / 2 \text {, }
$$

Eq. 10: $\sin ^{-1} \cos \phi=\theta_{\mathrm{HnHn}+1}, \phi=60+\phi_{1} / 2$.
For an angle of $111.006[\mathrm{deg}] \mathrm{C}_{1} \mathbf{- 1}$ the internal angle γ is equal with θ^{3} of set A , the vicinal angle ϕ for cis 6,1 stereochemistry, relative to an angle of $99.211[\mathrm{deg}] \mathrm{C}_{1}-\mathbf{2}$ with the vicinal angle on set B (Table 2, entry 6).

Angles of 102.61 and 115.22 [deg] of $1 / \mathrm{E}^{2}-\mathrm{C}_{2}-$ 2 gives two six set angles with ${ }^{3} J_{\mathrm{H} 2 \mathrm{H} 3} 4.01[\mathrm{~Hz}]$ and $4.02[\mathrm{~Hz}]$. The third six set angles resulting from 115.22 [deg] with eq. 3 has ${ }^{3} J_{\mathrm{HH}}$ of $3.9[\mathrm{~Hz}$, with dihedral angle of $\theta_{\mathrm{H} 2 \mathrm{H} 3} 28.07$ [deg], almost equal with the recorded, as well as ${ }^{3} J_{\mathrm{H} 1 \mathrm{H} 2} 3.14[\mathrm{~Hz}]$, with $\theta_{\mathrm{H} 1 \mathrm{H} 2} 50.44$ [deg], result from second set.

The angles $1 / \mathrm{E}^{2}-\mathrm{C}_{4} \mathbf{- 2}, 118.97,104.485$ or 115.883, results by multiplied the manifold value with 1,2 , or 4 , containing in their six set angles information about the tetrahedral angle $\mathrm{C}_{4} \mathbf{- 2}$. The transformation from 104.485 to corresponding set angles with $\theta^{6} 115.598$, leading to an angle of 107.59 [deg], relative to 107.801 [deg] result from
115.883 [deg], or 109.051 [deg] from 118.97[deg]. Successive transformation from 118.97 [deg] with eq. 3 giving an angle of 106.469 [deg].

The tetrahedral angles C_{4} of all iminocyclitols $\mathbf{1 - 5}$ are much smaller as C_{1} in accord with the values of $\mathrm{E} 1.9-2.1 \mathrm{KJ} / \mathrm{molix} 10^{6}$, or must be extracted from sets $1 / E^{2}$ resulting: 107.65 (1), 107.59 (2), 108.20 (3), 107.71 (4), 108.54 (5). As an observation, in case of iminocyclitols $\mathbf{3}$ and $\mathbf{4}$ the vicinal angles of ${ }^{3} J_{\mathrm{HH}} 5.2[\mathrm{~Hz}]$ are 107.56 and 108.70 [deg] (Table 1, entry 14, and 18).

As an observation, in case of 3-sphere approach[4, 5], with manifold angle calculated from the differences between two atoms of carbon chemical shift, the tetrahedral angle 107.02 [deg] of $\mathrm{C}_{1}-\mathbf{2}$ was found on set C with calculated dihedral angle of $53.26[\mathrm{deg}]$ and vicinal coupling constant of $3.03[\mathrm{~Hz}]$. Increasing the number of sets under seven sets unit or six sets units result the following angles: $51.733^{\mathrm{U} 2 \mathrm{~F} 2}, 3.09[\mathrm{~Hz}]$ or $50.209^{\mathrm{US} 1 \mathrm{~B} 2}$, $3.15[\mathrm{~Hz}]$. Tetrahedral approach (Table 2, $\mathrm{C}_{1} \mathbf{- 1}$) giving an angle of 109.80 [deg] in third set $\left(1 / E^{2}\right)$, with a vicinal angle of $39.60[\mathrm{deg}$] $\phi=2 \mathrm{x}(109.801$ - 90)) and a dihedral angle of $50.40[\mathrm{deg}]$. The tetrahedral angle 109.80 [deg] under the $+/-60$ [deg] rule has the corresponding vicinal angle on set C of first unit and the dihedral angle on set B of second unit. Thus, for $\mathrm{cis}^{5,2}$ stereochemistry the half of θ^{UlB3} is equal with vicinal angle and half of θ^{UlB4} with dihedral angle.

CONCLUSIONS

Tetrahedral angles $\varphi[\mathrm{deg}]$ are calculated under polyhedral approach from carbon chemical shift $\delta_{\mathrm{cn}}[\mathrm{ppm}]$, demonstrating their relationship with vicinal angles ϕ [deg] and corresponding dihedral angles $\theta_{\mathrm{HnHn}+1}[\mathrm{deg}]$. The value of $\mathrm{E}\left[\mathrm{J} / \mathrm{molix} 10^{6}\right]$ gives information about the tetrahedral angle, and no at list about the differences between the protected 1 and deprotected 2-5, or N-alkylated and/or C-alkylated 3-5 iminocyclitols free based 14 or salt 5 , enabling the calculation of the vicinal coupling constant ${ }^{3} J_{\mathrm{HH}}[\mathrm{Hz}]$. The dihedral angle with positive or negative sign is in close relationship with the corresponding vicinal angle, ${ }^{10}$ the internal or the tetrahedral angle at one of the atoms of carbon implicate on vicinal coupling.

The tetrahedral angles can be predicted from $1 / E^{2}$ or $1 / E^{1 / 2}$ in function of the values of polyhedron using the set of six angles under the polyhedron rule as presented in Table 3.

Table 3
Tetrahedral angles $\varphi[\mathrm{deg}]$ predicted under polyhedron rule

Entry	$\varphi_{\mathrm{C} 1}[\mathrm{deg}]$	$\varphi_{\mathrm{C} 2}[\mathrm{deg}]$	$\varphi_{\mathrm{C} 3}[\mathrm{deg}]$	$\varphi_{\mathrm{C} 4}[\mathrm{deg}]$	$\varphi_{\mathrm{NH}}[\mathrm{deg}]$
1.	108.45	101.39	101.33	107.65	110.46
	106.47				
2.	108.116	102.61	102.53	107.79	106.41
3.	107.902	102.26	101.76	108.702	-
4.	108.49	102.46	102.19	108.23	-
5.	106.17	102.39	103.37	108.06	-

REFERENCES

1. C.-I. Mitan, R. M. Moriarty, P. Filip, E. Bartha, C. Draghici and M. T. Caproiu, " $2577^{\text {th }}$ ACS National Meeting in Orlando", Florida, March 31 - April 42019, ANYL 93, Publisher: American Chemical Society, Washington, D. C.
2. C. I. Mitan, R. M. Moriarty, P. Filip, E. Bartha, C. Draghici and M. T. Caproiu, " $257^{\text {th }}$ ACS National Meeting in Orlando", Florida, March 31- April 4 2019, Sci-Mix ANYL 291. Publisher: American Chemical Society, Washington, D. C.
3. E. Bartha, C.-I. Mitan, C. Draghici, M. T. Caproiu, P. Filip and R. M. Moriarty Rev. Roum. Chim, 2021, 66, 178-183; DOI: 10.33224/rrch.2021.66.2.08 (Eng).
4. C.-I. Mitan, E. Bartha, C. Draghici, M. T. Caproiu, P. Filip, L. Tarko and R. Moriarty, "ACS VIRTUAL National Meeting", 16-20 August 2020, Moving chemistry from bench to market, ANYL 22, oral presentation, morressier, 32 pag. Publisher: American Chemical Society, Washington, D. C.; DOI.10.1021/ scimeetings.Oc06576.
5. C.-I. Mitan, E. Bartha, P. Filip, C. Draghici, M. T. Caproiu and R. Moriarty, "ACS National Meeting", 5-30 April 2021, Live virtual events, Macromolecular chemistry: the second century. ANYL ID: 3549263, oral presentation, morressier, 39 pag. Publisher: American Chemical Society, Washington, submitted on Jun 14, 2021; DOI.10.1021/scimeetings.1c00922.
6. R. M. Moriarty, C. I. Mitan, N. Branza-Nichita, K. R. Phares and D. Parrish, Org. Lett., 2006, 8, 3465; doi.org/10.1021/ol061071r
7. Wikipedia, https://en.wikipedia.org/wiki/polyhedral, dodecahedron, icosahedron[9/23/2021].
8. J. B. Hendrickson, D. J. Cram and G. S. Hammond, "Chimie Organică", Third Edition copyright@1959, 1964, 1970, Editura ştiințifică şi enciclopedică, Bucureşti, 1976.
9. A. G. Evdokimov, A. J. Kalb, T. F. Koetzle, W. T. Klooster and J. M. L. Martin, J. Phys. Chem. A, 1999, 103, 744; doi.org/10.1021/jp9837840.
10. C.-I. Mitan, E. Bartha, C. Draghici, M. T. Caproiu, P. Filip and R. M. Moriarty, SciencePG, 2022, 10, 21; doi: 10.11648/j.sjc.20221001.13.

[^0]: * Corresponding author: cmitan@yahoo.com

