A UNIQUE EXAMPLE OF DICHLORODINITRATOCUPRATE(II) COMPLEX: SYNTHESIS AND MOLECULAR STRUCTURE OF 1,1'METHYLENEDIPYRIDINIUM DICHLORODINITRATOCUPRATE(II)

Mahmoud M. AL-KTAIFANI, ${ }^{* a}$ Mohammad K. SABRA, ${ }^{\text {b }}$ Bassem ASSFOUR ${ }^{\mathrm{c}}$ and Fatemh MAKSOUD ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Radioisotopes, Atomic Energy Commission, P.O. Box 6091, Damascus, Syrian Arab Republic
${ }^{\text {b }}$ Department of Physics, Atomic Energy Commission, P.O. Box 6091, Damascus, Syrian Arab Republic
${ }^{\text {c }}$ Department of Chemistry, Atomic Energy Commission, P.O. Box 6091, Damascus, Syrian Arab Republic

Received August 13, 2020

The unique organic-inorganic hybrid salt $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ was synthesized and isolated as pure green powder and fully characterized by multinuclear NMR, FTIR and UV-vis spectroscopy and powder-X-ray diffraction studies. The molecular structure of the salt shows separate organic dications $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]^{2+}$ and distinctive inorganic $\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ anions. The copper centre lies in a distorted square planar environment with two Cl atoms are trans- to each other with the $\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cl}$ bond angle and mean $\mathrm{Cu}-\mathrm{Cl}$ bond distance of $178.8(1)^{\circ}$ and $2.23(6) \AA$ respectively. While the two bonded, O atoms $\left(\mathrm{NO}_{3}\right)$ to Cu are also trans- to each other with $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ bond angle and average bond length of $178.7(9)^{\circ}$ and $1.80(1) \AA$ respectively. Interestingly, short $\mathrm{Cl}---\mathrm{O}$ (halogen bond) distances (2.92(5) $\AA)$ between each Cl atom and the nearest adjacent O atom of $\left(\mathrm{NO}_{3}\right)$ group within the $\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ ion are also identified. These intra-molecular $\mathrm{Cl}---\mathrm{O}$ short contacts are more likely the reason for the stability of this unusual $\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ anion. $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ is somewhat a rare example of a complex of the anion $\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ with $\mathrm{Cl}---\mathrm{O}\left(\mathrm{NO}_{2}\right)$ halogen bonding.

INTRODUCTION

The demand of novel compounds is always a big challenge to researchers working in various research fields. ${ }^{1}$ Recently, organic-inorganic hybrid salts are considered as promising compounds in diverse domains such as of crystal engineering, supramolecular chemistry and materials science, ${ }^{2-5}$ and also for optical semiconductor materials. ${ }^{6,7}$ Combination of organic and inorganic parts in hybrid organicinorganic salts gives these types of compounds the
desired modified properties, which are more likely unavailable in the neat organic or inorganic parts. Countable $1,1^{\prime}$-methylenedipyridinium hybrid salts of form $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{OsF}_{\mathrm{n}} \mathrm{Cl}_{6-\mathrm{n}}\right] \quad(\mathrm{n}=0-6)$ were previously reported to investigate the order structure of octahedral mixed halo-osmium(IV) complexes. ${ }^{8-11}$ In the late years, the dication $1,1^{\prime}$ methylenedipyridinium $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]^{2+}$ was exploited by us to synthesize many organicinorganic hybrid salts of form; $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]$ $\left[\mathrm{MCl}_{4}\right], \quad\left(\mathrm{M}=\mathrm{Zn},{ }^{12} \quad \mathrm{Cd},{ }^{12} \quad \mathrm{Cu},{ }^{13} \quad \mathrm{Pt}^{14}\right)$, $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right] \quad\left[\mathrm{AuCl}_{4}\right]_{2},{ }^{13} \quad\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]$

[^0]$\left[\mathrm{PtCl}_{6}\right],{ }^{14} \quad\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{Cu}\left(\mathrm{NO}_{4}\right)_{4}\right]^{15} \quad$ and $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right] .{ }^{16}$ Furthermore, the optical nonlinearity of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]$ $\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right],{ }^{16} \quad\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{CuCl}_{4}\right]^{17}$ and $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{AuCl}_{4}\right]_{2}{ }^{18}$ were also investigated, suggesting them to have potential applications in optical domain.

This was an incentive for us to synthesize the novel and unique organic-inorganic mixed chloronitrato-hybrid salt: 1,1'-Methylenedipyridinium dichlorodinitratocuprate(II). So, the preparation, the spectroscopic characterization and the molecular structure investigations of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ by powder X-ray diffraction studies are the subject of the present article.

RESULTS AND DISCUSSION

The titled compound $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]$ $\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ (Figure 1) was obtained by treatment of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ with $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ in an aqueous solution. The obtained product was isolated as pure green salt, which was insoluble in common organic solvents, but it has a good solubility in water or dimethyl sulfoxide (DMSO).

Fig. 1 - Molecular structure of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$.
The product is characterized by the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopies. Expectedly, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra for $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]$ $\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ (Figure 2) have similar features to their corresponding ones of the related organicinorganic hybrid salts $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right][\mathrm{CuX} 4]$ ($\mathrm{X}=\mathrm{Cl}^{-13}$ or $\mathrm{NO}_{3}{ }^{-15}$). The ${ }^{1} \mathrm{H}$ NMR spectrum showed the anticipated four resonances (broadening peaks) corresponding to four different proton environments. The obtained peaks are in their expected intensity ratio. Broadening peaks are also observed in ${ }^{1} \mathrm{H}$ NMR spectra of the $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right][\mathrm{CuX} 4]\left(\mathrm{X}=\mathrm{Cl}^{-}\right.$or $\left.\mathrm{NO}_{3}{ }^{-}\right)$, which most probably due to the electric quadruple effects of the paramagnetic $\mathrm{Cu}(\mathrm{II})$. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum also gives the expected four resonances consistent with four environmentally different C centres.

The FTIR spectrum of the product is shown in Figure 3. It is readily noticeable the presence of the characteristic absorption bands at $1186 \mathrm{~cm}^{-1}$ $(\mathrm{C}-\mathrm{N}), 1492 \mathrm{~cm}^{-1}\left(\mathrm{CH}_{2}\right), 1631 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$ and also the distinctive stretching band of NO_{3} group at $1384 \mathrm{~cm}^{-1}$. The obtained bands are quite informative and consistent with the molecular structure in Figure 1.

The UV-Vis spectrum of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]$ $\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ (Figure 4) gave a broad absorption band at $\lambda_{\max }=267.5 \mathrm{~nm}$ extending in the range $250-$ 400 nm . The distinguished broad spectral feature is more likely associated with the combination of $\pi-\pi^{*},\left(\mathrm{~d} \rightarrow \mathrm{~d}^{*}\right)$ transition and/or ligand-to-metal charge-transfer (LMCT) in the complex. Since the measurement of UV-Vis spectrum was carried out in a very dilute DMSO solution $\left(40 \times 10^{-6} \mathrm{M}\right)$, no absorptions in the visible region of the spectrum were detected.

The molecular structure of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]$ $\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ was also confirmed by powder Xray diffraction study (Figure 5). It shows discrete organic dications $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]^{2+}$ and inorganic $\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ anions. The copper atom lies in a distorted square planar environment with two Cl atoms are trans- to each other with the $\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cl}$ angle is $178.8(1)^{\circ}$. In similar manner, the two bonded $\mathrm{O}\left(\mathrm{NO}_{3}\right)$ atoms to Cu are also trans- to each other with $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angle of $178.7(9)^{\circ}$. The mean $\mathrm{Cu}-\mathrm{Cl}$ and $\mathrm{Cu}-\mathrm{O}\left(\mathrm{NO}_{3}\right)$ bond distances are 2.23(6) \AA and $1.80(1) \AA$ respectively (Table 1). Both of them are lying in their expected range and comparable to their corresponding ones of the related structurally characterized salts $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{CuCl}_{4}\right],{ }^{13} \quad\left(\mathrm{CH}_{3} \mathrm{NH}_{3}\right)_{2}\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{4}\right]^{19}$ and $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{3}\right)_{4}\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{4}\right]\left(\mathrm{NO}_{3}\right)_{2} .{ }^{20}$ Noteworthy, the Cu centre within $\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ anion is an inversion centre (Figure 5).

For the two coordinated NO_{3} groups, the $\mathrm{N}-\mathrm{O}$ bond lengths lie within $1.20(1)-1.24(6) \AA$ and the $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angles within $113.6(0)-126.4(0)^{\circ}$ (Table 1). Both are consistent with the average N O bond distance and planarity of nitrate ions respectively. ${ }^{21}$ The $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{N}$ bond distances as well as $\mathrm{C}-\mathrm{N}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles within the organic dication $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]^{2+}$ unit of the $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ did not show any significant changes from those of parent salt $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O} .{ }^{22}$

Fig. $2-{ }^{1} \mathrm{H}$ (above) and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (below) spectra of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ (DMSO- $d_{6}, 25^{\circ} \mathrm{C}$).

Fig. 3 - FTIR spectrum of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right](\mathrm{KBr}$ disc).

Fig. $4-\mathrm{UV}-$ Vis spectrum of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ in DMSO at concentration of $40 \times 10^{-6} \mathrm{M}$.

Fig. 5 - Molecular structure of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ with atomic labeling. Intra-molecular hydrogen bonds and short $\mathrm{Cl}---\mathrm{O}$ distances (halogen bond) are indicated by dashed lines.

It is worth to mention that the molecular structure investigation exhibits intra-molecular $\mathrm{C}-\mathrm{H} \cdot \mathrm{O}$ and $\mathrm{Cl}---\mathrm{O}$ short contacts within each unit (Figure 5). C-H • O short contacts are observed where the H center is bridging the closest two O atoms of the same NO_{3} within its own unit (Table 2). Noteworthy, short Cl---O distances (2.89(5) \AA and 2.94(4) \AA) between each Cl atom and the nearest adjacent O atom of NO_{3} group within the $\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ ion are also identified. This distance is considerably less than the sum of van der Waals radii of Cl and O atoms $\left(3.4 \AA\right.$)..23

Interestingly, $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ is a rather rare example of a complex containing the anion $\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right.$] and $\mathrm{Cl}--\mathrm{O}\left(\mathrm{NO}_{3}\right)$ halogen bonding. This type of interactions, which controls the arrangement of molecules in crystal packing of complexes, was recently recognized by the International Union of Pure and Applied Chemistry (IUPAC) and the Cambridge Structural Database (CSD). This non-covalent interaction is called halogen bond (XB) and defined as intermolecular or an intra-molecular interaction between halogen
center acting as Lewis acid (halogen bond donor) and an atom having lone pair as Lewis base (halogen bond acceptor). ${ }^{24-26}$

These intra-molecular Cl---O short contacts as well as the mentioned hydrogen bridging are more likely the reason for the stability of this unusual $\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ anion.

In the crystal packing of the complex weak intermolecular $\mathrm{C}-\mathrm{H} \cdot$. O hydrogen bonds link the dictions $\quad\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]^{2+}$ and anions $\left[\mathrm{CuCl}_{2}(\mathrm{NO})_{3}\right]^{2-}$ to form three dimensional network (Figure 6). These hydrogen bondings may be effective in the stabilization of the crystal packing of the complex. Furthermore, parallel pyridinium rings of two adjacent different $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]^{2+}$ units are also observed with a centroid-centroid distance between pyridinium rings of $3.07(9) \AA$ (Figure 7). This strongly indicates that the crystal packing of the complex is also further stabilized by non-covalent $\pi-\pi$ interactions between pyridinium rings of adjacent dications. ${ }^{27,28}$ For more details, the atomic coordinates of the complex are presented in Table 4.

Fig. 6 - Portion of the packing diagram of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$. Hydrogen bonds between molecules are indicated by dashed lines [Symmetry codes: (i) $-\mathrm{x},-\mathrm{y},-\mathrm{z}$; (ii) $-\mathrm{x}, \mathrm{y}+1 / 2,-\mathrm{z}$].

Fig. 7 - Parallel pyridinium rings of two adjacent different $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]^{2+}$ units are observed in the crystal packing of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$. Hydrogen atoms are omitted for clarity.

Table 1
Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$

C1-C2	1.362(8)	N2-C10	1.467(5)
C1-N1	$1.345(5)$	$\mathrm{Cu}-\mathrm{O} 3$	1.818(2)
C2-C3	1.388(3)	$\mathrm{Cu}-\mathrm{O} 6$	1.785(1)
C3-C4	1.386 (3)	$\mathrm{Cu}-\mathrm{Cl} 1$	2.133 (8)
C4-C5	1.363(1)	$\mathrm{Cu}-\mathrm{Cl} 2$	2.393(9)
C5-N1	1.350(1)	N3-O1	1.263(8)
N1-C10	1.468(8)	N3-O2	1.230 (0)
C6-C7	1.385(7)	N3-O3	1.213(1)
C6-C11	1.306(6)	N4-O4	1.201(0)
C7-C8	1.384(0)	N4-O5	1.201(7)
C8-C9	1.370(0)	N4-O6	1.221 (0)
C9-N2	1.345(7)	C11-N2	1.426 (3)
$\mathrm{Cl} 1-\mathrm{Cu}-\mathrm{Cl} 2$	178.8(1)	O4-N4-O5	119.9(9)
$\mathrm{O} 3-\mathrm{Cu}-\mathrm{O} 6$	178.7(9)	O4-N4-O6	126.3(9)
$\mathrm{Cl} 1-\mathrm{Cu}-\mathrm{O} 3$	106.1(8)	O5-N4-O6	113.6(0)
$\mathrm{Cl} 1-\mathrm{Cu}-\mathrm{O} 6$	72.6(0)	$\mathrm{Cu}-\mathrm{O} 3-\mathrm{N} 3$	134.9(0)
$\mathrm{Cl} 2-\mathrm{Cu}-\mathrm{O} 3$	75.0(0)	$\mathrm{Cu}-\mathrm{O} 6-\mathrm{N} 4$	134.9(8)
$\mathrm{Cl2-Cu-O6}$	106.2(0)	N1-C10-N2	113.4(6)
O1-N3-O2	119.6(4)	C1-N1-C5	121.1(4)
O1-N3-O3	120.1(6)	C9-N2-C11	119.6(3)
O2-N3-O3	120.1(9)		

Table 2
Hydrogen bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$ for the complex

	$\boldsymbol{d}(\boldsymbol{D}-\boldsymbol{H})$	$\boldsymbol{d}(\boldsymbol{H} \cdots \boldsymbol{A})$	$\boldsymbol{d}(\boldsymbol{D} \cdots \boldsymbol{A})$	$\boldsymbol{A n g l e}(\boldsymbol{D}-\boldsymbol{H} \cdots \boldsymbol{A})$
C4(vii)-H4(vii) \cdots O2(iv)	1.064	2.394	3.183	129.65
C2(vi)-H3(vi) \cdots O2(iv)	1.136	2.495	3.447	141.49
C5(ix)-H5(ix) \cdots O3(iv)	1.062	2.391	3.339	147.91
C5(vii)-H5(vii) \cdots O3(iv)	1.062	2.391	3.339	147.91
C8(ii)-H8(ii) \cdots O5(ii)	0.877	2.999	3.570	124.53
C8(ii)-H8(ii) \cdots O6(ii)	0.877	1.750	2.528	148.15

Symmetry code: (i) $-\mathrm{x},-\mathrm{y},-\mathrm{z}$; (ii) $-\mathrm{x}, \mathrm{y}+1 / 2,-\mathrm{z}$.

EXPERIMETAL

Materials and Measurements

Reactions and manipulations were conducted in air with reagent grade solvents. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} .3 \mathrm{H}_{2} \mathrm{O}$ (BDH , Germany) is a commercial sample and it is used as received. $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ was prepared according to literature method. ${ }^{29}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were acquired on a Bruker Bio spin 400 spectrometer (Switzerland). Microanalysis was performed using EURO EA (Italy). Powder X-ray diffraction was performed on a Stoe Transmission diffractometer (Stadi P) (Stoe \& CIE, Germany).

Synthesis

of 1,1`-methylenedipyridinium dichlorodinitratocuprate
An aqueous solution of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.28 \mathrm{~g}, 1.15 \mathrm{mmol}$, $\left.3 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}\right)$ was added to a solution of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ ($0.30 \mathrm{~g}, 1.15 \mathrm{mmol}, 3 \mathrm{ml}$ of $\mathrm{H}_{2} \mathrm{O}$). Green precipitate was immediately formed and the resulting mixture was stirred overnight. The solvent was then removed in vacuum to afford quantitatively $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$, which was washed with EtOH to give a green powder (450 mg , yield 90%).

Characterization and NMR, FTIR and UV-vis spectroscopic data of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$

Green powder, m.p. $201^{\circ} \mathrm{C}$, Yield: 90%; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{CuN}_{4} \mathrm{O}_{6}$ (430.69): C, 30.68; H, 2.81; N, 13.01 Found: C, 30.37; H, 2.94; N, 12.48; ${ }^{1} \mathrm{H}$ NMR (400.1 MHz , DMSO- d_{6}): $\delta_{\mathrm{H}} 7.31\left(2 \mathrm{H}, \mathrm{b}, \mathrm{CH}_{2}\right), 8.31(4 \mathrm{H}, \mathrm{b}$, py), $8.78(2 \mathrm{H}$, m, py), $9.49\left(4 \mathrm{H}, \mathrm{b}\right.$, py) $;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.6 MHz, DMSOd_{6}): $\delta_{\mathrm{C}} 77.53\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 129.24$ (s, Py), 146.42 (s, Py), 149.27
(s, Py). IR (KBr) $v \mathrm{~cm}^{-1}: 1186$ (C-N, str), 1384 (NO_{3}, str), $1492\left(\mathrm{CH}_{2}\right.$, def), $1631\left(\mathrm{C}=\mathrm{N}\right.$, str). UV (DMSO): $\lambda_{\max }(\varepsilon)=$ 267.5 nm (2.1).

Powder X-ray diffraction Study:

In our case, all attempts to obtain single crystal of good quality and proper size of the material were unsuccessful. Therefore, the structure was determined using the powder X-ray diffraction data. This was collected using a transmission diffractometer (STADI-P STOE, Darmstadt, Germany), with Cu K_ α radiation $(\lambda=1.54060 \AA)$ and a germanium monochromator operated at 50 kV and 30 mA . The scanning angle was from 5° to 100° with a scanning rate of 1° per minute. The structure solution of new hybrid materials exclusively from the indexation of the powder X-ray diffraction patterns using the conventional methods is mostly uneasy tasked. This is due to the poor crystallinity of such materials combined with low symmetries or large unit cells. In order to solve the material structure, a direct calculation method was applied, using the software package EXPO2014. ${ }^{30}$ A monoclinic cell with satisfactory figure of merit was found for the materiel. The structure can be described as belonging to the space group $P 21 / m$. The crystal parameters are: $a=15.396$ (3) $\AA ; b=15.6959$ (15) $\AA ; c=9.5449$ (12) $\AA ; \alpha=\gamma=$ $90.0^{\circ} ; \beta=96.160(7)^{\circ}$. The structure was further refined using Rietveld method as implemented in GSAS-II package. ${ }^{31,32}$ The final values of the crystallographic data and refinement goodness factors are shown in Table 3. The factors are reliable and reasonably satisfactory to support indexing results $\mathrm{M}(20)=20.6$. The final Rietveld plots of the X-ray diffraction patterns are given in Figure 8.

Fig. 8 - The final Rietveld pattern for $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$. The $(*)$ is the observed values and (-) are the fitted ones. $(-)$ is the difference between the observed and the fitted values.

Table 3
Crystallographic data and refinement parameters for $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$

Chemical formula	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{CuN}_{4} \mathrm{O}_{6}$
Mr	430.69
Crystal colour	Green
Crystal system	Monoclinic
Space group	P2 ${ }_{1} / m$
Temperature (K)	298
Unit cell parameters	
$a(\AA)$	15.3960 (3)
b (\AA)	15.6959 (15)
$c(\AA)$	9.5449 (12)
$\beta\left({ }^{\circ}\right.$)	96.160 (6)
$\mathrm{V}\left(\AA^{3}\right)$	2293.3 (6)
Z	2
Radiation type	$\mathrm{Cu} K \alpha_{1}$
λ	1.54059 Å
Specimen shape, size (mm)	Fine powder
Data collection	
Diffractometer	STOE transmission STADI-P
Specimen mounting	powder loaded between two Mylar foils
Data collection mode	transmission
Scan method	step
2θ min	$5.08{ }^{\circ}$
2θ max	$80.06{ }^{\circ}$
2θ step $=$	0.02°
Refinement	
R factors and goodness of fit $\quad R_{\mathrm{p}}$	0.067
$R_{\text {wp }}$	0.088
$R_{\text {exp }}$	0.051
$\mathrm{R}\left(F^{2}\right)$	0.00000
χ^{2}	3.024
Number of data points	3750
Number of parameters	30
Number of restraints	0
Background function: "chebyschev" function with 20 terms: 76(6), 5.8(4)e2, 1.5(30)e2, -	
$\begin{aligned} & 3.2(8) \mathrm{e} 6, \quad 3.1(22) \mathrm{e} 6,-5.3(14) \mathrm{e} 6, \\ & 3.3(15) \mathrm{e} 6,4.9(18) \mathrm{e} 5,7(3) \mathrm{e} 5 \end{aligned}$)e6, 5.0(14)e6, 6.3(30)e6, -2.4(8)e6, -
Profile function: Finger-Cox-Jephcoat function parameters U, V, W, X, Y, SH/L: peak variance $($ Gauss $)=\mathrm{Utan}(\mathrm{Th})^{2}+\mathrm{V} \tan (\mathrm{Th})+\mathrm{W}$: peak $\mathrm{HW}($ Lorentz $)=$	
$\mathrm{X} / \cos (\mathrm{Th})+\mathrm{Y} \tan (\mathrm{Th}) ; \mathrm{SH} / \mathrm{L}=\mathrm{S} / \mathrm{L}+\mathrm{H} / \mathrm{L} \mathrm{U}, \mathrm{V}, \mathrm{W}$ in (centideg) ${ }^{2}$, X \& Y in centideg	
$\begin{aligned} & -1.83(12) \mathrm{e} 3,1.2(3) \mathrm{e} 2,101(7), 9.9(4 \\ & \text { with "isotropic" model: parameters: } \\ & \text { "isotropic" model }\left(10^{6} *\right. \text { delta Q/Q) } \\ & 1.000, \end{aligned}$	-73(7), 0.001, Crystallite size in microns , G/L mix 1.000, 1.000, Microstrain, meters: Mustrain, G/L mix 1000.000,
Preferred orientation correction: March-Dollase correction coef. $=1.000 \mathrm{axis}=[0$, $0,1]$	

Table 4
Atomic coordinates of the complex

Atom	x	y	z
C 1	0.37949	0.42330	1.38888
C 2	0.46180	0.44211	1.35835
C 3	0.49329	0.52441	1.38079
C 4	0.44100	0.58593	1.43360

CONCLUSION

The novel organic-inorganic hybrid ionic compound $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2} \mathrm{CH}_{2}\right]\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ was synthesized. It is a remarkable case of hybrid salt containing dichlorodinitratocuprate(II) $\left[\mathrm{CuCl}_{2}\left(\mathrm{NO}_{3}\right)_{4}\right]$ with $\mathrm{Cl}---\mathrm{O}\left(\mathrm{NO}_{2}\right)$ halogen bond. The obtained complex was fully characterized by spectroscopic methods and its identity was confirmed by powder X-ray diffraction study.

SUPPLEMETARY INFORMATION

CCDC 1981718 contains the supplementary crystallographic data for this paper. This data can be obtained free of charge via www.ccdc.cam.ac.uk/ conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033).

Acknowledgements: The authors would like to thank Professor I. Othman, Director General, Professor A. H. AlRayyes, Head of the Radioisotope department, for their support of this work. We also thank Chem. A. Alsharif for his help.

REFERENCES

1. S. H. Mir, L. A. Nagahara, T. Thundat, P. MokarianTabari, H. Furukawa and A. Khosla, J. Electrochem. Soc., 2018, 165, B3137-B3156. doi:10.1149/ 2.0191808jes.
2. N. Kimizuka and T. Kunitake, Adv. Mater., 1996, 8, 8991. doi:10.1002/adma. 19960080119.
3. D. B. Mitzi, M. T. Prikas and K. Chondroudis, Chem. Mater., 1999, 11, 542-544. doi:10.1021/cm9811139.
4. F. Bonhomme and M. Kanatzidis, Chem. Mater., 1998, 10, 1153-1159. doi:10.1021/cm970755d.
5. M. Wachhold and M. Kanatzidis, Chem. Mater., 2000, 12, 2914-2923. doi:10.1021/cm000102o.
6. C. R. Kagan, D. B. Mitzi and C. D. Dimitrakopoulos, Science, 1999, 286, 945-947. doi:10.1126/ science.286.5441.945.
7. H. H. Li, Z. R. Chen, L. C. Cheng, J. B. Liu, X. B. Chen and J. Q. Li, Cryst. Growth Des. 2008, 8, 4355-4358. doi:10.1021/cg800959s.
8. C. Bruhn and W. Preetz, Acta Cryst.,1996, C52, 321325. doi:10.1107/S0108270195010717.
9. C. Bruhn and W. Preetz, Acta Cryst., 1995, C51, 11121116. doi:10.1107/S0108270194015015.
10. C. Bruhn and W. Preetz, Acta Cryst., 1995, C51, 865-867. doi:10.1107/S0108270194011960.
11. M. Höhling and W. Preetz, Acta Cryst., 1998, C54, 481483. doi:10.1107/S0108270197017174.
12. M. M. Al-Ktaifani and M. K. Rukiah, Chem. Pap., 2011, 65, 469-476. doi:10.2478/s11696-011-0031-4.
13. M. M. Al-Ktaifani and M. K. Rukiah,. Acta Cryst., 2012, C68, m246-m250. doi:10.1107/S0108270112031885.
14. M. M. Al-Ktaifani and M. K. Rukiah, Chem. Pap., 2012, 66, 1032-1038. doi:10.2478/s11696-012-0221-8.
15. M. M. Al-Ktaifani and M. K. Sabra, Rev. Roum. Chim. 2019, 64, 469-477.
16. M. D. Zidan, M. M. Al-Ktaifani and A. Allahham, Acta Phys. Polonica A, 2016, 130, 1326-1331. doi:10.12693/ APhysPolA.130.1326.
17. M. D. Zidan, M. M. Al-Ktaifani and A. Allahham, Optik - Int. J. Light and Electron Optics, 2016, 127, 44434446. doi:10.1016/j.ijleo.2016.01.164.
18. M. D. Zidan, M. M. Al-Ktaifani and A. Allahham, Acta Phys. Polonica A, 2017, 132, 1379-1382. doi:10.12693/APhysPolA.132.1379.
19. G. Steinhauser, K. Karaghiosoff and T. M. Klapötke, Z. Anorg. Allg. Chem., 2008, 634, 892-894. doi:10.1002/ zaac. 200700517.
20. M. Rademeyer, Acta Cryst., 2006, E62, m269-m271. doi:10.1107/S1600536806000201.
21. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, J. Chem. Soc. Perkin Trans, 1987, 2, S1-S19.
22. W.-Z. Fu, W.-J. Wang, Y.-Y. Niu and S. W. Ng, Acta Cryst., 2010, E66, o1211. doi:10.1107/ S1600536810015096.
23. A. Bondi, J. Phys. Chem., 1964, 68, 441-451. doi:10.1021/j100785a001.
24. G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati and G. Terraneo, Chem. Rev., 2016, 116, 2478-2601. doi:10.1021/acs.chemrev.5b00484.
25. R. Puttreddy, A. Peuronen, M. Lahtinen and K. Rissanen, Cryst. Growth Des., 2019, 19, 3815-3824. doi:10.1021/ acs.cgd.9b00284.
26. M. Palusiak and S. J. Grabowski, Struct. Chem., 2008, 19, 5-11. doi:10.1007/s11224-007-9244-0.
27. C. A. Hunter and J. K. M. Sanders, J. Am. Chem. Soc., 1990, 112, 5525-5534. doi:10.1021/ja00170a016.
28. C. Janiak, J. Chem. Soc. Dalton Trans., 2000. 38853896. doi:10.1039/b003010o.
29. B. Almarzoqi, A. V. George and N. S. Isaacs, Tetrahedron, 1986, 42, 601-607.
30. A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero and A. Falcicchio, J. Appl. Cryst., 2013, 46, 1231-1235. doi:10.1107/S0021889813013113.
31. B. H. Toby, J. Appl. Cryst., 2011, 34, 210-213. doi:10.1107/S0021889801002242.
32. R. B. Von Dreele, J. Appl. Cryst., 1997, 30, 517-525. doi:10.1107/s0021889897005918.

[^0]: * Corresponding author: cscientific3@aec.org.sy

