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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
is a beta coronavirus which led to coronavirus disease-2019 
(COVID-19) and has threatened global public health and 
economy. Currently there is no specific medicine for COVID-19. 
So there is an urgent need to develop broad-spectrum anti-
coronavirus drugs. The SARS-CoV 3-chymotrypsin-like 
protease (3CLpro) is highly conservative in beta-coronavirus and 
becomes viable target used for anti-SARS drugs. Support vector 
machine (SVM) algorithm was used to build quantitative 
structure–activity relationships (QSARs) for the activity 
(logIC50) of 204 inhibitors for SARS-CoV 3CLpro enzyme. 
Seven molecular descriptors were selected for the optimal SVM 
model with parameters C = 250 and γ = 0.15, which has root-
mean-square (rms) errors being 0.341 (training set), 0.337 
(validation set) and 0.336 (test set). Comparison with other 
models in the literature shows that the SVM model was proved 
to be satisfactory although the SVM model in this paper has 
more samples. The investigation results provide a powerful tool 
for searching new 3CLpro enzyme inhibitors for SARS-CoV.  

 
INTRODUCTION* 

Severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2) has threatened global public 

health and economy since the outbreak of an 

infectious disease in Wuhan, in December 2019.1 

As of 24 November 2021, 1:45 pm GMT+8, 

SARS-CoV-2 has caused 257,469,528 infected 

cases and 5,158,211 deaths (https://www.who.int/). 

In the 21st century, the two human coronavirus 

diseases, severe acute respiratory syndrome CoV 

(SARS-CoV) and Middle East respiratory 

 
 

syndrome CoV (MERS-CoV) were, respectively, 

discovered in 2002 and 2012. More than 8,422 and 

1,700 persons were, respectively, subjected to 

infection, with the fatality rates of 10% for SARS-

CoV and 36% for MERS-CoV.2 Fortunately, 

SARS-CoV epidemic was successfully contained 

by July 2003, but the MERS-CoV still poses a 

threat to public health and global safety. SARS-

CoV2 is the 3rd human coronavirus that can cause 

serious respiratory epidemics, named coronavirus 

disease-2019 (COVID-19). Currently there is no 

specific medicine for COVID-19.  
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Coronavirus (SARS-CoV) genome possesses  

6-12 open reading frames (ORFs), which accounts 

for translating two polyproteins (pp1a and pp1ab).3 

The polyproteins can be incised and functionalized 

into 16 non-structural proteins (nsps) by 3-

chymotrypsin-like protease (3CLpro), a cysteine 

protease composed of approximately 300 amino 

acids and three domains.4,5 Furthermore, 3CLpro 

has the ability of cleaving the intracellular protein 

NEMO and of inhibiting the active state of 

interferon signaling pathway. Thus, SARS-CoV 

3CLpro is instrumental in bringing about viral 

genome replication and transcription, and other 

important viral life processes, such as protein 

translation, cleavage, and modification and nucleic 

acid synthesis.6 There is 96.1% sequence similarity 

in 3CLpros of SARS-CoV-2, SARS-CoV and 

MERS-CoV. 7-10 Further, their 3CLpros exhibit a 

high degree of structural conservatism.11  

Thus SARS-CoV 3CLpro is taken as a viable 

target for developing anti-SARS drug and 3CLpro 

inhibitors for SARS-CoV should be effective for 

SARS-CoV-2.6-8 

Kumar and Roy introduced a model for 

inhibitory activity (logIC50) based on quantitative 

structure–activity relationships (QSARs). Eight 

descriptors and 69 candidates for SARS-CoV 

3CLpro enzyme were used to develop the model.8 

The training and test sets, respectively, have 56 and 

13 molecules, possessing R2 of 0.764 and 0.711, 

respectively. Recently, Yu correlated inhibitory 

constants (pKi) of molecules for SARS-CoV 

3CLpro enzyme with molecular descriptors. The 

numbers of molecules and descriptors are, 

respectively 89 and 6. Both the training and test 

sets have R2 above 0.7.1 QSAR models reflect the 

correlations between the physicochemical or 

biological properties studied and molecular 

descriptors representing information related to the 

structure of compounds. These models can be used 

for drug identification and optimization through 

predicting the activity or property of candidate 

molecules, including that have not been 

synthesized. Thus this technology can save time 

and money and accelerate the efficiency of drug 

development.12 The purpose of this paper is to 

establish a QSAR of 204 inhibitory activities 

(logIC50) for SARS-CoV 3CLpro enzyme.6,13 

Support vector machine (SVM) algorithm, along 

with seven descriptors, was adopted to build the 

model that will be a powerful tool for searching 

novel 3CLpro enzyme inhibitors for SARS-CoV. 

METHODS 

There are 204 inhibitors and their activity 

(logIC50) for SARS-CoV 3CLpro enzyme listed in 

Table S1 (see Supplemental Information), that 

were taken from the literature.6,13 The experimental 

IC50 values varied from 0.5 to 780 μM, and the 

logIC50 values were in the range of -0.301~2.892 

by converting to logarithm of IC50. A lower IC50 

value indicates the stronger activity for the 

inhibitor. These experimental data were composed 

of peptidomimetic inhibitors and nonpeptidic small 

molecule inhibitors. The later species include 

decahydroisoquinoline, octahydro-isochromene, 

unsymmetrical aromatic disulphides, pyrazolone, 

pyrimidines, flavonoids, bioflavonoids, chalcones, 

isatin, terpenoid, triazole and piperidine 

derivatives. Generally, the training sets account for 

2/3 ~ 4/5 of the total samples.14,15 In this paper, 

inhibitors were randomly partitioned into a training 

set (Nos. 1-140 in Table S1), a validation set (Nos. 

141-172) and a test set (Nos. 173-204). The 

training set was used for training SVM models, the 

validation set for adjusting SVM parameters, and 

the test set for evaluating models.  

The molecular structures of inhibitors were 

constructed with ChemBioDraw Ultra 12.0, 

followed by optimization with the AM1 method in 

Gaussian 09. In the end, 4885 molecular 

descriptors were calculated for each inhibitor with 

Dragon 6.0.16 After removing those molecular 

descriptors with partial correlation coefficient 

above 0.90 or near to a constant, 1036 descriptors 

were obtained for each molecule.  

By using the principle of structural risk 

minimization, SVM algorithms have good 

prediction performance even if a small number of 

samples are used. As one of the most common 

application forms of SVM algorithms, support 

vector regression (SVR) deals with nonlinear 

problems via mapping training samples into a high 

dimensional feature space, followed by carrying 

out linear regression. The linear function in SVR to 

be dealt with is: 17-20 
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 Then, Equation (1) becomes: 
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 After introducing the kernel function for the dot 

product in the D-dimensional feature space, the 

minimizing function is: 
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Gaussian radial basis function can be used: 

 )(-)(
2
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where the parameter γ is the kernel width. Both C 

and γ values need to be optimized carefully 

because SVR models may produce over-fitting or 

under-fitting if the parameters C and γ are too large 

or too small.17-20 

RESULTS AND DISCUSSION 

Stepwise multiple linear regression (MLR) in 

IBM SPSS statistical 19 was carried out, through 

using 1036 descriptors as independent variables 

and 204 logIC50 in Table S1 (see Supplemental 

Information) as dependent variables. New variable 

was introduced when its increment of 

determination coefficient ΔR2 above 0.01. The 

seven descriptors, VE1_B(m), VE1_B(s), SM5_X, 

GATS7m, JGI9, nRNHR and F07[N-O], were 

entered QSAR models. Table 1 shows the 

descriptor definitions.  

The 2D matrix-based descriptors VE1_B(w) are 

molecular descriptors derived from the sum of the 

coefficients of the eigenvector associated with the 

last (largest negative) eigenvalue of Burden matrix 

on a H-depleted molecular graph.16 VE1_B(w) are 

calculated with: 

  =
=

nsk

i ilwB_VE
1

)(1  (11) 

here li is the ith coefficient of the last eigenvector 

of Burden matrix, and nSK means the number of 

graph vertices. w denotes the vertex weighting 

scheme, i.e., atomic properties used as the atomic 

weightings for descriptor calculation, including 

atomic mass (m) and intrinsic state (s), etc. 

Similarly, the 2D matrix-based descriptor, spectral 

moment of order 5 from chi martix (SM5_X) is 

derived from:  
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where X denotes Chi matrix (X) and λ is the 

eigenvalue of chi matrix.16 

The descriptor GATS7m (Geary autocorrela-

tions of lag 7 weighted by mass) belongs to Geary 

autocorrelations (GATSkw) that are calculated with: 
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The parameters k, w, nAT, δij and Δ denote the 

lag value, weighting method by atomic mass, the 

total number atoms in a molecule, the Kronecker 

delta, and the sum of the Kronecker deltas, 

respectively.16 GATSkw encodes the information on 

molecular size, geometry and symmetry. 16,21,22 

A mean topological charge index (JGIk) (k 

being an integer between one and ten) is related to 

the unsymmetrical matrix CT. The element CTij is 

equal to δi if i = j, and (mij - mji), otherwise.16 The 

descriptor JGI9 is correlated with charge 

distribution along the topological structure in a 

molecule. 
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Table 1 

The descriptor definitions and blocks 

Descriptor Definition Block  

VE1_B(m) Coefficient sum of the last eigenvector from Burden matrix weighted by 

mass 

2D matrix-based descriptors 

VE1_B(s) Coefficient sum of the last eigenvector from Burden matrix weighted by I-

state 

2D matrix-based descriptors 

SM5_X Spectral moment of order 5 from chi martix 2D matrix-based descriptors 

GATS7m Geary autocorrelations of lag 7 weighted by mass 2D autocorrelations 

JGI9 Mean topological charge index of order 9 2D autocorrelations 

nRNHR Number of secondary amines (aliphatic) Functional group counts 

F07[N-O] Frequency of N-O at topological distance 7 2D Atom Pairs 

 
Table 2 

Descriptor characteristics for the MLR model 

Descriptor Standardized Coefficient t-test Sig. VIF 

VE1_B(m) 0.519 6.989 0.001 2.301 

VE1_B(s) -0.242 -3.162 0.001 2.442 

SM5_X -0.180 -3.274 0.000 1.257 

GATS7m 0.191 3.775 0.000 1.070 

JGI9 -0.176 -3.421 0.000 1.104 

nRNHR 0.539 10.604 0.000 1.076 

F07[N-O] -0.198 -3.770 0.000 1.151 
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Fig. 1 – Structural and activity diversity maps. (A) Chemical space defined by first two principal components.  

(B) Distribution comparison of logIC50 values in different data sets. 

 

In addition, the descriptor nRNHR (R: aliphatic 

group linked through C, not C = O) is the number 

of secondary amines (aliphatic). A molecule with 

functional group nRNHR is inclined to form 

hydrogen bond with targets. The descriptor F07[N-

O] means the number of N-O groups at topological 

distance 7. 

The characteristics of seven descriptors, 

VE1_B(m), VE1_B(s), SM5_X, GATS7m, JGI9, 

nRNHR and F07[N-O] selected for QSARs are 

shown in Table 2. As can been seen from Table 2, 

each of the descriptors possesses low sig.-value  

(< 0.05), which suggest these descriptors being 

important variables and related to the inhibitory 

activity logIC50. The variance inflation factor (VIF) 

of each descriptor is less than 10, suggesting that 

they do not have serious multicollinearity problem 

among them. According to the t-test, their t-test 

absolute values decrease in the order: nRNHR, 

VE1_B(m), GATS7m, F07[N-O], JGI9, SM5_X, 

and VE1_B(s), and their importance affecting the 

inhibitory activity logIC50 decreases with the same 

order. In addition, it should be pointed out that the 

descriptors, VE1_B(m), GATS7m, JGI9, SM5_X 
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and VE1_B(s), have no obviously physical 

meaning, resulting in difficulties in mechanism 

interpretation for QSAR models. Despite this fact, 

QSARs can be used to predict the activities since 

QSAR studies are independent of mechanism 

information.23 

Figure 1 shows the distribution maps for the 

structural and activity diversity covered by 204 

inhibitors. Figure 1A is the chemical space 

expressed by first two principal components that 

were calculated with the principal component 

analysis (PCA) from seven molecular descriptors 

used. The smaller distance among the points, the 

higher is the structural similarity. Figure 1A, B 

shows that structurally distinct chemotypes cover a 

wide range of activities logIC50 and appear in three 

data sets, which indicates that it is feasible to 

predict the activities logIC50 for the test set, by 

applying the QSARs based on the training set.24,25 

The seven descriptors, nRNHR, VE1_B(m), 

GATS7m, F07[N-O], JGI9, SM5_X, and VE1_B(s), 

were used for developing SVM model for 

inhibitory activity logIC50, through applying 

MATLAB R2014a and LibSVM.21 The grid search 

method was selected to train the SVM parameters 

C and γ. The rms errors of 32 compounds from the 

validation set were used to estimate the 

performance of SVM model when the SVM 

parameter C varied from 50 to 500 with the step of 

C = 50. Figure 2 shows their rms errors versus C 

parameter with γ = 0.15. As is shown in Figure 2, 

the rms error reaches to the minimum value of 

0.337 when C is 250. Similarly, the parameter γ 

varied from 0.05 to 0.5 with the step of γ= 0.05. As 

can be seen from Figure 3, the curve falls to the 

lowest level when rms error is 0.337 and γ is 0.15. 

Therefore, the optimal SVM parameters C and γ 

are 250 and 0.15, respectively. The optimal SVM 

model was tested with the 32 compounds in the 

test set. Figure 4 shows the relationship between 

experimental and calculated log IC50 from the 

SVM model. Their rms errors of the training, 

validation and test sets are, respectively, 0.341, 

0.337 and 0.336. Their determinant coefficients are 

0.642, 0.619, and 0.603, respectively, which are 

less than the results (R2 of 0.764 and 0.711) of 

Kumar and Roy.8 However, the results in this paper 

still could be acceptable because their model was 

based on only 69 molecules and 16 compounds 

were removed from the data set. Further, they used 

more descriptors (n = 8) for QSAR models.8 

Furthermore, the rms errors in this paper are more 

less than that (the training set, rms = 0.435; the test 

set, rms = 0.525) by Yu,1 although this paper dealt 

with more samples. 
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Figure 5 is the Williams plot, describing the 

standardized residuals () calculated with the 

optimal SVM model against the leverages (h). The 

prediction results are reliable when the sample 

points lie in the applicability domain.26,27 Figure 6 

shows that there is only one sample (No. 107, N-

(4-(tert-butyl)phenyl)-N-(2-(tert-butylamino)-2-

oxo-1-(pyridin-3-yl)ethyl)-1-methyl-1H-imidazole-

4-carboxamide) with || > 3. This phenomenon 

indicates that the compound of No. 107 may have 

great experimental error for the measured activity 

value. Moreover, the warning leverage h* was 

calculated with the expression: 3×(p+1)/ 

n= 3×(7+1)/140 = 0.171, here p being the numbers 

of descriptors and n being the number of molecules 

in training set). There are four compounds (Nos. 8, 

44, 136 and 175) possessing larger leverage values 

(> 0.171) and lower standardized residuals ()  

(< 3), which indicates the optimal SVM model has 

good generalizability. Note that, however, QSAR 

models with different performances can provided 

higher and lower prediction accuracies for 



 Inhibitors against SARS-COV 3CLpro enzyme 327 

molecules with similar structures or with same 

groups.28 Figure 6 shows three molecular structures 

(Nos. 63, 101, and 123) from the training set, that 

possess the lowest absolute errors. The prediction 

accuracies of molecules in the test set depend on 

their similarity to the molecule in the training set, 

e.g. the molecules of in Fig. 6.24,25,28 
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Fig. 5 – Plot of standardized residuals against the leverages (h*= 0.171). 
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CONCLUSIONS 

Although many factors affect the inhibitory 

activities (logIC50) against SARS-CoV 3CLpro 

enzyme, 2D matrix-based descriptors (VE1_B(m), 

VE1_B(s) and SM5_X), 2D autocorrelations 

(GATS7m and JGI9), functional group count 

(nRNHR) and 2D atom pair (F07[N-O]) reflect the 

structural information relating to logIC50. The 

SVM model obtained in this paper has parameters 

of C = 250 and γ = 0.15, resulting in determinant 

coefficients of 0.642 (training set), 0.619 

(validation set), and 0.603 (test set). The SVM 

model in this paper can provide a powerful tool for 

searching new 3CLpro enzyme inhibitors for 

SARS-CoV.  
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