MANIFOLD INVERSION ON PREDICTION DIHEDRAL ANGLE FROM VICINAL COUPLING CONSTANT WITH 3-SPHERE APPROACH

Carmen-Irena MITAN, ${ }^{\text {a* }}$ Emerich BARTHA, ${ }^{a}$ Petru FILIP, ${ }^{a}$ Constantin DRAGHICI, ${ }^{a}$ Miron T. CAPROIU ${ }^{\text {a }}$ and Robert M. MORIARTY ${ }^{\text {b }}$
a"Costin. D. Nenitescu" Institute of Organic and Supramolecular Chemistry, Splaiul Independentei 202B, Bucharest, Roumania, 060023
${ }^{\text {b }}$ University of Illinois at Chicago, Department of Chemistry, Chicago, Il, USA, 60607

Received November 10, 2022

Dihedral angles are predicted from vicinal coupling constants ${ }^{3} J_{\mathrm{HH}}[\mathrm{Hz}]$ with 3-sphere approach, sphere or torus trigonometric equations of circle 1, 2 and circle inversion 3-5 for all cis-, trans$e e$, trans-aa stereochemistry. The existence of circle inversion was demonstrated with conformational analysis on five and six membered rings. The sign and the stereochemistry results from vicinal coupling constant under trigonometric equations confirmed by algebraic equations, Hopf and Lie algebra theory. 3-Sphere, a hypersphere in 4D enable for all stereochemistry calculation dihedral angles under magnetic wave (NMR data $-{ }^{3} J_{\mathrm{HH}}[\mathrm{Hz}]$), and all isomers from only one vicinal coupling constant.

INTRODUCTION

The dihedral angle of the HCCH fragment with cis, trans-ee and trans-aa stereochemistry calculated from magnetic wave is an angle found at intersection of two congruent disks, centered on the perimeter of each other with equilateral triangles as vertices, six Hope fibration in terms of circles and ordinary sphere, nested tori of Vilarceau circles linking. The tandem vicinal ϕ deg (eq. 1) - dihedral angles $\theta_{\mathrm{HnHn}+1}$ deg (eq. 2) result from vicinal coupling constant ${ }^{3} J_{\mathrm{HH}}[\mathrm{Hz}]$ with Lie algebra - 3 -sphere approach theory [1, 2].

Eq. 1: cis, trans-ee ${ }^{3,2}: \quad \sin ^{-1} \cos \phi=\theta_{\mathrm{HnHn}+1}$
Eq. 2: trans-aa $a^{6,1 \text { or } 5,2}$, trans-e $e^{4,1}: \cos ^{-1} \sin (-\phi)=\theta_{\mathrm{HnHn}+1}$
$\varphi=\left(n \times{ }^{3} J_{\mathrm{HnHn}+1}\right)^{2}$
where: $\theta_{\mathrm{HH}}[\mathrm{deg}]$ - dihedral angle, $\varphi[\mathrm{deg}]$ - vicinal angle, ${ }^{3} J_{\mathrm{HH}}[\mathrm{Hz}]$ - vicinal coupling constant, with cis, trans-ee: $m=2$, trans-aa: $m=1$.

A torus is the stereogenic projection of the inverse image of a circle of 2-sphere latitude, having four characteristics circles: meridian, parallel and two Villarceau circles. Circles usefully for calculation angles from proton and carbon chemical shift or construction the six sets on two units [3].

[^0]
RESULT AND DISCUSSION

Two circles $\left(\alpha_{0}, \beta_{0}\right)$ intersecting each other on the point $\mathrm{P} \epsilon \phi$ are transversal, and after moving the point P slightly along a geodesic in the normal direction to the circles can be drawn other two circles $\left(\alpha_{\epsilon}, \beta_{\epsilon}\right)$ through the resulting point P^{\prime} of ϕ. The pairs $\left(\alpha_{\epsilon}, \beta_{0}\right),\left(\alpha_{0}, \beta_{\epsilon}\right)$ has 2 distinct intersecting points near P , points arbitrarily close to P with transversal circles through them as presented in Fig. 1 [4], two circles of torus and two circles of Dupin cyclide. Each point of the smooth closed surface homeomorhic to either a sphere or a torus ($\phi \in \mathrm{R}^{3}$) able to build 4 distinct circles fully contained in the surface is a cyclide. Takeuchi claim that a surface with 7 circles through each point is a sphere [4].

Fig. 1 - A) Torus circles intersecting Dumpin cyclide circles; B) Two angles of sets CT and CD.

The inversion of a ring torus is the image of ring Dupin cyclide, non-spherical algebraical surface of degree four[3].

The circles $\alpha_{\epsilon}, \beta_{0}$ reassemble the intersection of two right triangles inscribe on them, two half acute angle of rhombic dodecahedron which can be placed on two different sets under 3-sphere approach. The circle β_{0} results from the tangent of circle α_{ϵ}, two intersecting circles on two points (M, M^{\prime}) having four triangles between center ($\mathrm{c}, \mathrm{c}^{\prime}$) of circles $\alpha_{\epsilon}, \beta_{0}$ and the points M, M^{\prime} (Fig. 1B). The circles α_{0} and β_{ϵ} drawn concentric on the interior of circle α_{ϵ} and nonconcentric on the interior of circle β_{0} reassembles the intersection of a torus with a Dupin cyclide (Fig. 1A). The angles $\theta^{\text {CT }}$ and θ^{CD} are equals with angles $\mathrm{C} 1 \theta^{\mathrm{Ai}}$ and $\mathrm{T} 1 \theta^{\mathrm{Ai}}$, angles of sets A resulting from sin function in the first case and tan function in the second case.

Fig. 2 - Six angles with cis, trans stereochemistry on two sets A, B.

Six angles with cis, trans-ee, trans-aa stereochemistry can be drowned on three concentric cons, solid angle versus conic section; after decomposition in two circles, conic section reassembling the trigonometric eq. 2 , the square of the solid angle is replaced by the sphere equation. Considering only the east side of the circles with positive angles, namely sets A, B, the trigonometric equations $2-5[5,6]$ have angles of set A equals with ϕ and angles of set B equals with $\theta_{\mathrm{HnHn}+1}$ deg in combinations characteristics for all stereochemistry of the HCCH fragment. Sets A and B result from the sin and cos functions in case of torus circle and from the tan and inverse of tan function in case of the Dupin cyclide circle.

Eq. 3: $\quad \tan ^{-1} \sin (-\phi)=\theta_{\mathrm{HnHn}+1}$
Eq. 4: $\quad \sin ^{-1}(\cot (-\phi))=\theta_{\mathrm{HnHn}+1}$
Eq. 5: $\quad \sin ^{-1}(\tan (-\phi))=\theta_{\mathrm{HnHn}+1}$

$$
\begin{aligned}
& \text { trans-a } a^{6,1 \text { or } 5,2}: \theta_{\mathrm{HnHn}+1}{ }^{\text {trans }}=-180-\theta_{\mathrm{HnHn}+1}{ }^{\text {cis }} \\
& \text { trans-e } e^{4,1 \text { or } 3,2}: \theta_{\mathrm{HnHn}+1}{ }^{\text {trans }}=-90-1+\theta_{\mathrm{HnHn}+1}
\end{aligned}
$$

All cis, trans stereochemistry results from the trigonometric equations $2-5[5,6]$ are found on six sets angles on two units U1 and S1 (sometimes on seven sets on one-unit U1 or S1). Seven sets unit contain three units of three sets angles: 1. A, B, C; 2. D, E, A; 3. F, G, B; U or S or combination of U or S . The number of units increasing until the calculated dihedral angles is almost equal with the predicted one. The unit C 1 or T 1 are equals with U 1 or S 1 if one of the first angle of seven sets angles are higher or smaller as 5 deg (Fig. 3). The Java Script program for transformation from unit U to unit S and unit S to unit U was published already [1].

Fig. 3 - Six sets angles one two units, $\mathrm{C} 1 \theta^{\mathrm{Ai}}$ and $\mathrm{T} 1 \theta^{\text {Ai }}$. unit C1 with one angle calculated from sin function, unit T1 with one angle calculated from tan function; C 1 or $\mathrm{T} 1=\mathrm{U} 1$ if one angle $\theta^{\mathrm{N} 1}>1$ and C 1 or $\mathrm{T} 1=\mathrm{S} 1$ if one angle $\theta^{\mathrm{N1}}<1$.

The circle inversion eqs. 3-5 enable calculation for one vicinal coupling constant ${ }^{3} J_{\mathrm{HH}} \mathrm{Hz}$ all the
isomers. Two torsional angles with trans- $a a^{6,1}$ stereochemistry between ${ }^{3} J_{\mathrm{HH}}$ of $6-6.3$ and $7.1-$ 7.9 Hz with negative sign [6] are prove for circle inversion, demonstrated with conformational analysis [6] on D-, L-talonic acid [7] or on D-, L-ribitol [8] series (Fig. 4), relative to one torsional angle with positive sign result from eq. 1, or alternatively directly the dihedral angle from eq. 2. For examples, for a vicinal coupling constant of 2.6 Hz from eq. 1 result a gauche angle of 62.96 deg with positive sign, instead of cis as recorded experimentally [7], negative cis angles resulting only from eq. 3 (-24.447 deg) and 5 (-30.69 deg). The conformation of 2,6 -dideoxy-

2,6-imino-D and L-talonic acid 1D, 1L can't be established with molecular models using dihedral angles calculated with eq. 1, 2 from recorded cis/trans stereochemistry, introduction of the circles inversion eqs. 3-5 giving a good correlation between recorded vicinal coupling constant and the sign of the dihedral angles (Table 1). D-talonic acid 1D has boat conformation $\mathbf{B}^{0.3}$ in case of cis recorded ${ }^{3} \boldsymbol{J}_{\mathrm{H} 3 \mathrm{H} 4}=2.6[\mathrm{~Hz}]$ and skew $\mathbf{S}^{\mathbf{0}}{ }_{1}$ in case of gauche angle $\theta_{\mathrm{H} 3 \mathrm{H} 4}=62.96[\mathrm{deg}]$ result from eq. 1 . L-talonic acid $\mathbf{1 L}$ has skew $\mathbf{S}^{\mathbf{3}}{ }_{1}$ conformation on Stoddart's diagram [9]. The sign around the six membered ring reported in literature indicate skew conformation instead of $\mathbf{B}^{0.3}$ [10].

Table 1
Predicted dihedral angles $\theta_{\mathrm{nn}+1}$ deg of D -talonic acid 1D and L -talonic acid 1L

	$\mathrm{H}_{\mathrm{n}} \mathrm{H}_{\mathrm{n}+1}$	$\begin{aligned} & { }^{3} J_{\mathrm{HH}} \\ & {[\mathrm{~Hz}]} \\ & \mathbf{1 D} \\ & \hline \end{aligned}$	$\theta_{\mathrm{HnHn}+1}$ [deg]	$\begin{aligned} & { }^{3} J_{\mathrm{HH}} \\ & {[\mathrm{~Hz}]} \\ & \mathbf{1 L} \\ & \hline \end{aligned}$	$\theta_{\mathrm{HnHN}+1}$ [deg]
1.	cis- $\mathrm{H}_{1} \mathrm{H}_{2}$	3.8	$-39.10^{\text {eq. } 4}$	3.8	$32.23{ }^{\text {eq. } 1}$
2.	trans $-\mathrm{H}_{1} \mathrm{H}_{2}$	7.7	$-143.56{ }^{\text {eq. } 4}$	7.7	$149.29^{\text {eq. } 2}$
3.	trans $-\mathrm{H}_{2} \mathrm{H}_{3}$	7.3	$143.29^{\text {eq. } 2}$	7.3	$\begin{aligned} & \hline-141.28^{\text {eq. } 3} \\ & -131.786^{\text {eq. } .4} \end{aligned}$
4.	cis- $\mathrm{H}_{3} \mathrm{H}_{4}$	2.6	$\begin{aligned} & \hline-24.44^{\text {eq. } 3} \\ & -30.69^{\text {eq. } 5} \end{aligned}$	2.4	$\begin{aligned} & \hline-21.37^{\text {eq. } 3} \\ & -25.169^{\text {eq. } 5} \end{aligned}$
5.	trans $-\mathrm{H}_{3} \mathrm{H}_{4}$	2.6	$62.96{ }^{\text {eq. } 1}$	2.4	$66.96{ }^{\text {eq. } 1}$
6.	trans $-\mathrm{H}_{4} \mathrm{H}_{5}$	6.4	-146.75 ${ }^{\text {eq. } 3}$	6.0	$126^{\text {eq. } 2}$
7.	1D: $\mathbf{B}^{0.3}$ cistrans $\mathrm{H}_{1} \mathrm{H}_{2}-$ trans $\mathrm{H}_{2} \mathrm{H}_{3}-$ cis $\mathrm{H}_{3} \mathrm{H}_{4}-$ trans $\mathrm{H}_{4} \mathrm{H}_{5}$$-39 /-143.56,143.29,-30.69,-146.75$				
8.	$\begin{gathered} 1 \mathrm{~L}: \mathbf{S}^{\mathbf{3}}{ }_{1} \text { cis/trans } \mathrm{H}_{1} \mathrm{H}_{2}-\text { trans } \mathrm{H}_{2} \mathrm{H}_{3}-\text { cis } \mathrm{H}_{3} \mathrm{H}_{4}-\text { trans } \mathrm{H}_{4} \mathrm{H}_{5} \\ 34.24 / 149.29,-141.28,-21.37,126 \end{gathered}$				

1D

1L

2D

2L

Fig. $4-\operatorname{Six} 1$ (D, L talonic acid) and five membered ring iminocyclitols 2 ($\alpha-\mathrm{D}, \beta$ - L ribitol).

For vicinal coupling constant of 8.8 Hz the dihedral angles $\theta_{\mathrm{H} 3 \mathrm{H} 4}$ calculated with Karplus equations [9] are trans-a $a a^{5,2}$ and trans $a a^{6,1}$ with positive sign, and from 3 -sphere equations trans$a a^{6,1}$ with positive and negative sign in agreement with $\theta_{\mathrm{H} 3 \mathrm{H} 4}$ of D , L ribitol stereochemistry [8] and trans- $a a^{5,2}$ with positive sign.

Karplus equations [11]: ${ }^{3} J_{\mathrm{HH}}=8.8 \mathrm{~Hz}$
Eq. 6[12] ${ }^{3} J_{\mathrm{HH}}=9.5 \cos ^{2} \theta-0.28: 132.13 \mathrm{deg}$
Eq. $7[13]{ }^{3} J_{\mathrm{HH}}=1.1+17 \cos ^{2} \theta: 167.70 \mathrm{deg}$
Eq. $8[14] \quad{ }^{3} J_{\mathrm{HH}}=7.76 \cos ^{2} \theta-1.1 \cos +1.4: 137.7 \mathrm{deg}$
3-Sphere equations [5]: $\phi=(8.8)^{2}=77.44 \mathrm{deg}$
Eq. 1: $\sin ^{-1} \cos \phi=167.44 \mathrm{deg}, \quad \beta$ L-ribitol

Eq. 4: $\quad \sin ^{-1}(\cot -\phi)=-167.12 \mathrm{deg}, \quad \alpha D$-ribitol
Eq. 3: $\quad \tan ^{-1}(\sin -\phi)=135.69 \mathrm{deg}$
The 3-sphere dihedral angles with trans-aa and trans-ee stereochemistry results from "torsional angles", the corresponding cis angles $+/-180 \mathrm{deg}$ (eq. 2 U) for trans-aa or $+/-120 \mathrm{deg}$ for trans-ee, relationships between dihedral angle on set A and vicinal angle on set B and viceversa. 3-Sphere trans-ee dihedral angles results from trigonometric equations are $e e^{3,1}$ and $e e^{4,1}$ relative to convention rule $e e^{3,2}$ and $e e^{4,1}$. Way the tans-aa angles are not under $+/-120$ deg? Certainly, on conformational analysis with molecular models are used dihedral angles and not torsional angles as on Altona model [15]; eq. 1 giving the corresponding cis angle which must be subtracted from 180 deg and the eq. 2 the trans-aa dihedral angle. The 3 -sphere dihedral angles are cis torsional angles used recently on conformational analysis [16].

In Table 2 are presented angles of six sets on two units C 1 Ni , with units S 1 and U1
calculated for a vicinal coupling constant of 0.1 Hz. The Hopf coordinates (I) applied on cis/trans- $a a^{6,1}$ stereochemistry reveals the relationship between cis/trans ${ }^{6,1}$ and cis/trans ${ }^{5,2}$ of 180 deg. R^{4} complex Hopf fibration for
cis/trans-a $a^{6,1}$ stereochemistry, analog to cis/trans-a $a^{5,2}$, quaternionic multiplication $S^{3} \rightarrow S^{7} \rightarrow S^{4}$ for both, totally R^{16} octonionic Hopf fibration $S^{7} \rightarrow S^{15} \rightarrow S^{8}$ with $\theta^{\text {U1A6 }}=\phi$ and $\theta^{\mathrm{U1B} 3}=\theta_{\mathrm{HnHn}+1}$.

Table 2
Six sets angles C1Ni on two units S 1 Ni and U1Ni calculated for a vicinal coupling constant of 0.1 Hz

Entry	$\theta^{\mathrm{S} 1 \mathrm{Ni}}$	$\theta^{\mathrm{S} 1 \mathrm{Ai}}$	$\theta^{\mathrm{S} 1 \mathrm{Bi}}$	$\theta^{\mathrm{S} 1 \mathrm{Ci}}$	Entry	$\theta^{\mathrm{U} 1 \mathrm{Ni}}$	$\theta^{\mathrm{U} 1 \mathrm{Ai}}$	$\theta^{\mathrm{U} 1 \mathrm{Bi}}$	$\theta^{\mathrm{U} 1 \mathrm{Ci}}$
1.	$\theta^{\mathrm{S} 1} \theta^{\mathrm{N} 1}$	29.95	0.04	0.08	9.	$\theta^{\mathrm{U} 1 \mathrm{~N} 1}$	10.01	19.98	20.02
2.	$\theta^{\mathrm{S} 1 \mathrm{~N} 2}$	30.04	59.95	59.91	10.	$\theta^{\mathrm{U} 1 \mathrm{~N} 2}$	49.98	40.013	39.97
3.	$\theta^{\mathrm{S} 1 \mathrm{~N} 3}$	89.96	60.04	60.08	11.	$\theta^{\mathrm{U} 1 \mathrm{~N} 3}$	70.01	79.98	80.02
4.	$\theta^{\mathrm{S} 1 \mathrm{~N} 4}$	90.04	119.96	119.91	12.	$\theta^{\mathrm{U} 1 \mathrm{~N} 4}$	109.98	100.01	99.97
5.	$\theta^{\mathrm{S} 1 \mathrm{~N} 5}$	149.95	120.04	120.91	13.	$\theta^{\mathrm{U} 1 \mathrm{~N} 5}$	130.01	139.98	140.02
6.	$\theta^{\mathrm{S} 1 \mathrm{~N} 6}$	150.04	179.95	179.92	14.	$\theta^{\mathrm{U} 1 \mathrm{~N} 6}$	169.98	160.01	159.97
7.	ϕ_{2}	59.91	0.08	0.16	15.	ϕ_{2}	20.02	39.97	40.01
8.	$\phi_{1} / 2$	0.04	29.95	29.91	16.	$\phi_{1} / 2$	19.98	10.01	9.97

* $180-90.04=89.96 \mathrm{deg} ; 90+0.04=90.04 \mathrm{deg}, 90-0.04=89.96 \mathrm{deg}$

$$
\text { Cis/Trans-aa } a^{6, l}-\text { Hopf coordinates I (eq. 2U): }
$$

$$
X_{0}=\cos \theta^{\mathrm{U} 1 \mathrm{~A} 6} \sin -\theta^{\mathrm{U} 1 \mathrm{~B} 3}, X_{1}=\sin \theta^{\mathrm{U} 1 \mathrm{~A} 6} \sin \theta^{\mathrm{U} 1 \mathrm{~A} 6}
$$

$$
\begin{aligned}
& \text { i.e.: } \cos ^{-1} \sin -79.986=169.986 \mathrm{deg} \\
& \sin ^{-1} \sin 169.986=10.013 \mathrm{deg}
\end{aligned}
$$

$180-\theta^{\mathrm{UlA1}}=\theta^{\mathrm{UlA} 6}$; i.e. $: 180-10.013=169.986 \mathrm{deg}$ $X_{2}=\cos \theta^{\mathrm{UlA} 1} \sin \theta^{\mathrm{UlB} 3}, X_{3}=\sin \theta^{\mathrm{UlA} 1} \sin \theta^{\mathrm{UlA} 1}$ i.e.: $\cos ^{-1} \sin 79.986=10.013$.

Between $1.2-2.5 \mathrm{~Hz}$ dihedral angles are on unit U with trans-ee ${ }^{4,1}$ stereochemistry, the Hopf coordinates I (eq. 2 aU) ensuring the calculation of the dihedral angles trans-ee from $\theta^{41 \mathrm{~A} 1}$ and $\theta^{\mathrm{UlB} 1}$ in agreement with the algebraic equations 11c [1], $\theta^{\mathrm{U} 1 \mathrm{~A} 1}=\phi_{1 \mathrm{~B}} / 2$ and $\theta^{\mathrm{U} 1 \mathrm{~B} 1}=\phi_{1 \mathrm{~A}} / 2$. Hopf coordinates I (eq. 2bU) gives the dihedral angles with trans-ee ${ }^{3,2}$ stereochemistry but totally in disagreement with algebraic equation 11 d .

$$
\begin{align*}
& \text { Cis/Trans-ee } \left.e^{4,1}-\text { Hopf coordinates I (eq. } 2 \mathrm{aU}\right) \text { : } \\
& X_{0}=\cos \theta^{\mathrm{U1B} 4} \sin -\left(\theta^{\mathrm{UlA} 1}\right), \quad X_{1}=\sin \theta^{\mathrm{U1B} 18} \sin \theta^{\mathrm{U1B4} 4} \tag{2aU}
\end{align*}
$$

with $\theta^{\mathrm{UlA} 1}$ positive in sign

$$
\begin{equation*}
X_{2}=\cos \theta^{\mathrm{U} 1 \mathrm{~A} 4} \sin -\left(\theta^{\mathrm{UlB} 1}\right), \quad X_{3}=\sin \theta^{\mathrm{UlA} 4} \sin \theta^{\mathrm{U} 1 \mathrm{~A} 4} \tag{2aU}
\end{equation*}
$$

with θ^{UlB1} positive in sign;
Cis/Trans-ee ${ }^{3,2}-$ Hopf coordinates I (eq. 2bU):

$$
\begin{gather*}
X_{0}=\cos \theta^{\mathrm{UlB} 3} \sin \theta^{\mathrm{UlA} 1}, \quad X_{1}=\sin \theta^{\mathrm{UlB} 3} \sin \theta^{\mathrm{UlB} 3} \tag{2bU}\\
X_{2}=\cos \theta^{\mathrm{U} 1 \mathrm{~A} 3} \sin \theta^{\mathrm{UlB} 1}, \quad X_{3}=\sin \theta^{\mathrm{UlA} 3} \sin \theta^{\mathrm{UlA} 3} . \tag{2bU}
\end{gather*}
$$

The transformation unit U 1 to unit S 1 gives angles with trans-ee $e^{3,2}$ stereochemistry since $\phi^{\mathrm{U} 1}=$ $\phi_{2}{ }^{\mathrm{U} 1}-\phi_{1}^{\mathrm{U} 1} / 2<5 \mathrm{deg}$. Hopf coordinates I (2bS) indicate trans-ee $e^{3,2}$ in unit S if ϕ has positive sign and trans-ee ${ }^{4,1}$ if ϕ has negative sign, in comparation with Hopf coordinates I (eq. 2aS) and II (eq. 1S) where both negative or positive ϕ^{U1} are under trans-ee ${ }^{3,2}$ stereochemistry. Between $0-$ 1.1 Hz and $2.6-2.7 \mathrm{~Hz}$ dihedral angles trans-ee $e^{3,2}$
are on unit S1. Unit S1 is builds for $\phi^{\mathrm{U} 1}=\theta^{\mathrm{S} 1 \mathrm{~N} 1}<$ 5 deg , gauche angles resulting between $0-0.8 \mathrm{~Hz}$ ($60.04-63.24 \mathrm{deg}$) and $2.6-2.7 \mathrm{~Hz}$ (62.96, $60.84 \mathrm{deg})$.

Trans-ee $e^{4,1},-e e^{3,2}-$ Hopf coordinates I (eq. 2S):

$$
\begin{align*}
& \text { Trans-ee } e^{3,2}: X_{0}=\cos \theta^{S 1 \mathrm{~A} 3} \sin \left(-\theta^{\mathrm{SlB} 1}\right), \\
& X^{1}=\sin \theta^{\mathrm{SiA} 3} \sin \theta^{\mathrm{S} 1 \mathrm{~A} 3} \tag{2aS}
\end{align*}
$$

i.e.: $\cos ^{-1} \sin -(-0.040)=89.96 \mathrm{deg}$

$$
\begin{align*}
& \text { Trans-ee } e^{3,2}: X_{0}=\cos \theta^{S 1 \mathrm{~A} 3} \sin +\theta^{\mathrm{S} 1 \mathrm{~B} 1} \\
& X_{1}=\sin \theta^{\mathrm{S} 1 \mathrm{~A} 3} \sin \theta^{\mathrm{S} 1 \mathrm{~A} 3} \tag{2bS}
\end{align*}
$$

i.e.: $\cos ^{-1} \sin +0.040=89.96 \mathrm{deg}$

$$
\begin{align*}
& \text { Trans-ee } e^{4,1}: X_{0}=\cos \theta^{\mathrm{S} 1 \mathrm{~A} 4} \sin \left(-\theta^{\mathrm{S} 1 \mathrm{~B} 1}\right), \\
& X_{1}=\sin \theta^{\mathrm{S} 1 \mathrm{~A} 4} \sin \theta^{\mathrm{S} 1 \mathrm{~A} 4} \tag{2bS}
\end{align*}
$$

i.e.: $\cos ^{-1} \sin -0.040=90.04 \mathrm{deg}$

Equation 2 aS is equivalent with $\theta^{\mathrm{S} 1 \mathrm{~A} 4}=180-\theta^{\mathrm{S} 1 \mathrm{~A} 3}$. Negative algebraic angle giving also trans-ee $e^{3,2}$ stereochemistry.

Trans-ee ${ }^{3,2}$ - Hopf coordinates II (eq. 1S):
1S: Trans-e $e^{3,2}: X_{0}=\sin \theta^{\mathrm{SlA} 3} \cos +\theta^{\mathrm{SlB} 1}, X_{1}=\sin \theta^{\mathrm{SlA} 3} \sin \theta^{\mathrm{SIA} 3}$
i.e.: $\sin ^{-1} \cos +0.040=89.96 \mathrm{deg}$

1S: Trans-e $e^{3,2}: X_{0}=\sin \theta^{\text {S1A } 4} \cos \left(-\theta^{\text {SlB1 }}\right), X_{1}=\sin \theta^{\text {SIA } 4} \sin \theta^{\text {S1A } 4}$
i.e.: $\sin ^{-1} \cos -0.040=89.96 \mathrm{deg}$
with $\theta^{S 1 A 1}$ and $\theta^{S 1 B 1}$ negative in sign for trans-ee $e^{4,1}$ stereochemistry if $\phi_{2}<\phi_{1} / 2$ (eq. 2bS) and the gauche angle positive.

Excepting the rule of ϕ, positive angle result from eqs. 1, 2 and negative angles from eqs. 3-5. From unit S calculated only from vicinal coupling constant, the transformation S to U don't give information about the sign of $\phi^{\mathrm{U} 1}$. In case of eqs. 3-5 the tan function is compatible with transformation S to U or on seven sets angles sequence $\mathrm{U}-\mathrm{S}-\mathrm{U}$.

Scheme 1 - Flow-chart for prediction dihedral angles with 3-sphere approach and Java Script.

The differences between 3 -sphere trigonometric equations under 180 deg for trans-aa stereochemistry and 90 deg for trans-ee stereochemistry and Karplus angles under 120 deg (eqs. 6-8), in contradiction to IUPAC rule: trans$e e^{4,1}$ and $-e e^{3,2}$ stereochemistry, was overcome considering trans-aa stereochemistry under 180 deg and trans-ee stereochemistry under 120 deg (eqs. 9, 10) [5]. The presented trigonometric equations are in agreement with algebraic equations 11 [1].

$$
\begin{align*}
& \theta^{\text {trans-ee } 3,2}=120-\theta_{\mathrm{HnHN}+1}{ }^{\text {trans-ee } 3,2} \tag{9}\\
& \theta^{\text {cis-aab }, 1}=120-\theta_{\mathrm{HnHN}+1} \text { trans-ee } 4,1 \tag{10}
\end{align*}
$$

Algebraic equations 11a-c for dihedral angles with cis-, trans-stereochemistry on unit U and S :

$$
\begin{gather*}
\text { cis/trans-aa } a^{6,1}: \phi_{\mathrm{aa}, 1}=60+\left(\phi_{1}{ }^{\mathrm{A}} / 2\right) \tag{11a}\\
\text { cis/trans-a } a^{5,2}: \phi_{\mathrm{aa} 5,2}=\phi_{2 \mathrm{~A}}+\left(\phi^{1 \mathrm{~A}} / 2\right) \tag{11b}\\
\text { cis/trans-ee } e^{4,1}: \phi_{\mathrm{ee} 4,1}=\phi_{1 \mathrm{~A}} / 2=\theta^{\mathrm{B} 1} \tag{11c}\\
\text { cis/trans-e } e^{3,2}: \phi_{\mathrm{ee} 3,2}=\phi_{2}{ }^{1 \mathrm{~A}}-\left(\phi_{1}{ }^{1 \mathrm{~A}} / 2\right) \tag{11d}
\end{gather*}
$$

Fig. 5 - Java script program PREDICTIEACS2022.txt for prediction dihedral angles from vicinal coupling constant ${ }^{3} J_{\mathrm{HH}} \mathrm{Hz}$.

The flow-chart for prediction dihedral angles with 3 -sphere approach (Scheme 1) starts with calculations of the vicinal angle for cis and transee stereochemistry from vicinal coupling constant ${ }^{3} J_{\mathrm{HH}} \mathrm{Hz}$. In case of cis, trans-ee stereochemistry the 3 -sphere angles are calculated with eq. 1 and in case of trans-ee stereochemistry with eqs. 1-2.

From eqs. 3-5 results cis angles or trans-ee after multiplied or subtracted ϕ from $+/-90$ deg. The vicinal angle calculated for trans-aa stereochemistry from ${ }^{3} J_{\mathrm{HH}} \mathrm{Hz}$ gives with eq. 2 dihedral angles with trans-aa stereochemistry and with eqs. 3-5 the corresponding cis angles transformed in trans-aa under 180 deg rule.

Results are display for all stereochemistry; R^{32} Hopf coordinates covered by five trigonometric equations for all isomers results from only one vicinal coupling constant.

The Java Script program for prediction dihedral angles from vicinal coupling constants ${ }^{3} J_{\mathrm{HH}}[\mathrm{Hz}]$ is presented in Fig. 5. Dihedral angles are calculated for all cis, trans stereochemistry, and torsional angles transformed in dihedral angles conformed with Scheme 1. Java Script code and Notepad++ are used for realization of the program.

CONCLUSION

Dihedral angles with corresponding stereochemistry and sign can be predicted only from vicinal coupling constant ${ }^{3} J_{\mathrm{HnHn}+1}[\mathrm{~Hz}]$, introduction the chemical shift [1] in step 2 giving differences no more than 2 deg , a decisive step in analysis all aspects of stereochemistry under 3-sphere theories on next steps. In step two with conic section, Vilarceau circles [1] or rectangle equations [17] can be calculate from carbon and/or proton chemical shift the first angle of unit U or S. In step three are builds units U and S until the calculate angle is almost equal with the predicted one. Step 4 is just a verification step for calculation of the vicinal coupling constant from calculated dihedral angle. The positive (eqs. 1, 2) or negative (eq. 3-5) sign in case of five and six membered ring can be established with molecular models. From Java script program for prediction dihedral angle from vicinal coupling constant (vicinal angle) results six angles for only one vicinal coupling constant. Póncare conjunction - Lie algebra fitting well into the wave character of the NMR data, characteristics are torsional angles under 180 deg for cis/trans-aa or 120 deg for cis/trans-ee stereochemistry on two sets angles, particularly two intersecting circles. That be mentioned the Java Script programs with its trigonometric and algebraic equations work properly for vicinal coupling constants ${ }^{3} J_{\mathrm{HH}}$ between $0-6.1 \mathrm{~Hz}$ for cis and trans-ee stereochemistry and between $5.5-13.4 \mathrm{~Hz}$ for trans-aa stereochemistry. Higher ${ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}$ for cis stereochemistry or smaller ${ }^{3} J_{\mathrm{HH}}=4.5 \mathrm{~Hz}$ for trans stereochemistry are recorded to date, the algebraic and trigonometric equation for cis ${ }^{3} J_{\mathrm{HH}}$
between $2.8-6.1 \mathrm{~Hz}$ considered in this paper becomes compatible for trans stereochemistry, and viceversa.

Acknowledgements. We all are gratefully to Professor Robert Michael Moriarty for great collaboration over time, and for great time spend in his lab at University of Illinois at Chicago.

REFERENCES

1. C.-I. Mitan, E. Bartha, C. Draghici, M. T. Caproiu, P. Filip and R. M. Moriarty, Sci. J. Chem., SciencePG, 2022, 10, 21; DOI: 10.11648/j.sjc.20221001.13.
2. E. Bartha, C.-I. Mitan, C. Draghici, M. T. Caproiu, P. Filip and R. Moriarty, Rev. Roum. Chim., 2021, 66, 178; DOI: 10.33224/rrch.2021.66.2.08.
3. L. Garnier, H. Barki, S. Toufou and L. Puech, Computers and Mathem. Appl., 2014, 68, 1689; doi.org/10.1016/j,camwa.2014.10.020.
4. F. Nilov and M. Skopenker Algebraic Geometry 15 aug 2012; doi.org/10.48550/arXiv.1110.2338.
5. C.-I. Mitan, E. Bartha, P. Filip, C. Draghici, M. T. Caproiu and R. M. Moriarty, ACS National Meeting in Chicago, IL, August 21-25, 2022, CARB 3717557, 22 august 2022; doi.org/10.1021/scimeetins.2c00876.
6. C.-I. Mitan, E. Bartha, P. Filip, C. Draghici, M. T. Caproiu and R. M. Moriarty, ACS National Meeting in Chicago, IL, August 21-25, 2022, CARB 3717658, 22 august 2022, doi.org/10.1021/scimeetings.2c00523.
7. B. M. Malle, I. Lundt and T. M. Wrodnigg, Org. Biomol. Chem., 2008, 6, 1779; doi.org/10.1039/B719631H.
8. R. M. Moriarty, C. I. Mitan, N. Branza-Nichita, K. R. Phares and D. Parrish Org. Lett., 2006, 8, 3465; doi.org/10.1021/ol061071r.
9. X. Biamés, A. Ardéval, A. Planas, C. Rovira, A. Laio and M. Parrinello, J. Am. Chem. Soc., 2007, 129, 10686; DOI: 10.1021/ja068411o.
10. F. H. Cano, C. Foces-Foces and S. Garcia-Blanco, Tetrahedron, 1977, 33, 797; doi.org/10.1016/0040-4020(77)80195-6.
11. B. Coxon, Adv. Carb. Chem. Biochem., 2009, 62, 17; doi.org./10.1016/50065-2318(09)00003-1.
12. M. Karplus, J. Chem. Phys., 1959, 30, 11 doi.org/10.1063/1.1729860.
13. M. Barfield and M. Karplus, J. Am. Chem. Soc., 1969, 91, 1; doi.org/10.1021/ja01029a001.
14. C. A. G. Haasnoot, F. A. A. M. deLeeuw and C Altona, Tetrahedron, 1980, 36, 2783; doi.org/10.1016/0040-4020(80)80155-4.
15. J. B. Houseknecht, C. Altona, C. M. Hadad and T. L. Lowary, J. Org. Chem., 2002, 67, 4647; doi.org/10.1021/jo025635q.
16. C.-I. Mitan, E. Bartha, P. Filip, C. Draghici, M. T. Caproiu and R. M. Moriarty, Rev. Roum. Chim., 2022, 66, 941 ; DOI: 10.33224/rrch.2021.66.12.07.
17. E. Bartha, C.-I. Mitan,C. Draghici, M. T. Caproiu, P. Filip and R. M. Moriarty, Rev. Roum. Chim., 2022, 67, 167 ; DOI: 10.33224/rrch.2022.67.3.05.

[^0]: * Corresponding author: cmitan@yahoo.com

