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Quantitative structure activity relationship studies were 

applied on a series of 22 molecules of thiazolidine-2,4-dione. 

The compounds used are potent inhibitors of the  

15-hydroxyprostaglandin dehydrogenase (15-PGDH). The 

present study was performed using multiple regression 

analysis (MLR) and artificial neural network (ANN) to 

predict a QSAR model using molecular descriptors. Our 

results suggest QSAR model based of the following 

descriptors: polarizability (Pol), molar volume (MV), 

hydration energy (HE), surface area grid (SAG), molar 

weight (MW), energy of frontier orbital’s EHOMO (The 

Highest Occupied Molecular Orbital) and ELUMO (The 

Lowest Unoccupied Molecular Orbital) and atomic net 

charges (qN3, qC4, qC5 and qO7) for the inhibitory activities of 15-hydroxyprostaglandin dehydrogenase. The best predictive models 

by MLR and ANN methods gave highly significant square correlation coefficient (R2) values of 0.9623 and 0.9963 respectively. 

The model also exhibited good predictive power confirmed by the high value of R2
pred (0.7839 and 0.6324 respectively). 

 

 
INTRODUCTION 

Thiazolidine-2,4-dione derivatives have been 

studied extensively and found to have diverse 

chemical reactivity.1–3 Thiazolidine derivatives 

displayed a broad spectrum of biological activities 

including antimicrobial,3,4 antidiabetic,5,6 antiobesity,7  

anti-inflammatory,8 antioxidant,9 antiproliferative,10 

and antitumor.11 They inhibit corrosion of mild 

steels in acidic solution.12 Density functional 

theory methods offer an alternative use of 

inexpensive computational methods, which could 

handle relatively large molecules.13–17 
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The kind of activity is a function of the user’s18 

interest. QSAR is a predictive tool for a 

preliminary evaluation of the activity of chemical 

compounds by using computer aided models.19–21 

Quantitative structure activity relationship 

techniques increase the probability of success, reduce 

time, and cost in the drug discovery process.22–25 

QSAR has done much to enhance our understanding 

of fundamental processes and phenomena in 

medicinal chemistry and drug design.26–29 

Multiple linear regression (MLR) is a 

mathematical tool that quantifies the relationship 

between a dependent variable and one or more 

independent variables, it was used to develop 

QSAR models and all the variables that have been 

included in the model are significant.30–37 

Neural networks are artificial systems; they use 

a large number of interrelated data-processing 

neurons to emulate the function ofthe brain.38  

The primary route of prostaglandin 

metabolism in the body is initiated by  

15-Hydroxyprostaglandin Dehydrogenase  

(15-PGDH), which oxidizes the hydroxyl group 

to the ketogroup at position 15.39 

Such a process leads to a pronounced loss of 

biological activity, making it a key enzyme for 

prostaglandin biological inactivation.40 It 

inactivates a number of active leukotrienes and 

hydroxyeicosatetraenoic acids (HETEs). 15-PGDH 

can be found in many mammalian tissues 

especially the lung, kidneys and placenta41. 

Inhibition of 15-PGDH enzyme has drawn great 

attention in clinical management to reduce hair 

loss42, gastric ulcer healing,43 bone formationand 

interestingly dermal wound healing.44 

In the current study, we applied the QSAR for 

the prediction of thiazolidine-2,4-dione derivatives 

with inhibition of 15-PGDH activities. 

MATERIALS AND METHODS 

In the present work, the inhibition of  

15-PGDH,45 by a group of thiazolidine-2,4-dione 

derivatives was investigated to predict a QSAR 

model using molecular descriptors and (ANN, 

MLR) analysis. A group of 22 thiazolidine-2,4-

dione (Fig. 1) derivatives inhibitors of  

15-hydroxyprostaglandin dehydrogenase (15-PGDH) 

was selected for the study. The reported IC50 

values (M) have been converted to the logarithmic 

scale [pIC50], for QSAR study. 
 

 

 

 

Fig. 1 – 2Dstructures of thiazolidine-2,4-dione derivatives. 

These derivatives of thiazolidine-2,4-dione were synthesized by Y. Wu et al. 2010, and these structures were designed by 

MarvinSketch 6.2.1  software. 

 

Firstly, the twenty-three investigated molecules 

were preoptimized using the Molecular Mechanics, 

with Force Field (MM+) included in HyperChem 

version (8.08) package.46 After that, the results 

fromoptimized structures were further refined using 

the semi-empirical PM3 Hamiltonian implemented 
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also in HyperChem. We chose a gradient norm limit 

of 0.01 kcal/Å for the geometry optimization. 
The QSAR properties module from HyperChem 

(8.08) was used to calculate: molar polarizability 
(Pol), partition coefficient octanol/water (logP), 
molar volume (MV), hydration energy (HE), 
surface area grid (SAG) and molar weight (MW).  

The Quantum Chemical descriptors: energy of 
frontier orbital’s EHOMO and ELUMO and atomic net 
charges (qS1, qN3, qC4, qC5, qO6 and qO7) were 
computed using Gaussian 09W software47 by using 
DFT/B3LYP with cc-pVDZ basis set.25 

We used the software JMP 8.0.248 for multiple 
linear regression analysis and artificial neural 
network of molecular descriptors. 

RESULTS AND DISCUSSION 

Structure activity relationship (SAR) 

An important objective of this study was to 
evaluate the physicochemical domain on twenty- 

two derivatives of thiazolidine-2, 4-dione  

(Fig. 1) concerning their 15-PGDH inhibitors 

activity. The present series of thiazolidine-2, 4-

dione derivatives have been synthesized and 

characterized by Y. Wu et al.45  

The properties involved are: surface area 

grid (SAG), molar volume (MV), hydration 

energy (HE), partition coefficient octanol/water 

(logP), polarizability (Pol) and molecular 

weight (MW), the charges, the Highest 

Occupied Molecular Orbital (EHOMO) and the 

Lowest Unoccupied Molecular Orbital (ELUMO), 

which are listed in Tables 1 and 2. The results 

were calculated using HyperChem8.0.8 and 

Gaussian09 software. 

The molecular polarizability of a molecule 

characterizes the capability of its electronic system 

to modulate itself on the application of external 

fields, and it plays an important role in modeling 

many molecular properties and biological 

activities. 

 
Table 1 

Values of physicochemical descriptors used in the regression analysis 

Compound MW 

(uma) 

HE 

(kcal/mol) 

Log P SAG 

(A°2) 

Pol 

(A°3) 

MV 

(A°3) 

1 331.4000 -8.2000 -0.8100 542.5900 34.8200 890.7500 

2 334.3900 -7.5100 -0.8500 559.9100 34.1900 925.0600 

3 331.4000 -8.3200 -0.7000 541.4000 34.8200 892.5300 

4 307.3600 -6.7200 0.1100 558.3900 31.7800 900.4000 

5 326.3700 -8.4600 0.4900 551.8500 34.5900 907.8900 

6 346.4400 -6.9600 0.7200 616.3400 37.2300 1013.6400 

7 333.400 -6.1600 0.2000 578.4400 34.6800 945.3300 

8 346.4200 -8.3500 -1.3500 555.9900 35.9500 925.1400 

9 317.3800 -8.7600 -0.8600 517.4800 32.9800 838.0600 

10 317.4000 -4.6200 1.3400 563.3500 34.0400 920.5500 

11 301.3200 -10.2400 -1.2000 507.5500 30.6200 816.0400 

12 341.3800 -9.5900 -0.4600 564.8100 35.9400 941.3300 

13 325.3800 -6.7800 0.6800 553.0000 35.3000 913.9900 

14 355.3600 -12.0200 -1.2700 566.4900 35.8000 930.8600 

15 303.3800 -5.0200 1.0200 532.4200 32.2000 869.7200 

16 359.8300 -7.0300 0.8300 581.4700 37.2300 960.9200 

17 331.4300 -4.5500 1.7500 573.1400 35.8700 954.5600 

18 347.4300 -6.0800 0.9400 606.4500 36.5100 1001.0200 

19 375.4400 -7.3700 0.7800 623.8200 38.4300 1041.9100 

20 387.4500 -8.8200 1.1400 633.3700 43.1200 1069.8600 

21 375.4800 -8.1500 1.5400 649.6300 40.1800 1090.1600 

22 331.4300 -4.7300 1.7400 579.4700 35.8700 961.0500 
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Table 2 

Values of quantum descriptors used in the regression analysis 

Compound EHOMO 

(a.u) 

ELUMO  

(a.u) 

qS1 qN3 qC4 qC5 qO6 qO7 

1 -0.2199 -0.0806 0.2450 -0.7050 0.7130 -0.3000 -0.5610 -0.5870 

2 -0.2109 -0.0793 0.2440 -0.7050 0.7120 -0.3010 -0.5620 -0.5880 

3 -0.2202 -0.0809 0.2450 -0.7050 0.7130 -0.3000 -0.5610 -0.5870 

4 -0.2191 -0.0793 0.2460 -0.7050 0.7130 -0.3000 -0.5620 -0.5880 

5 -0.2179 -0.0790 0.2440 -0.7050 0.7120 -0.3010 -0.5620 -0.5880 

6 -0.2180 -0.0785 0.2450 -0.7050 0.7120 -0.3010 -0.5620 -0.5880 

7 -0.2170 -0.0782 0.2450 -0.7050 0.7120 -0.3010 -0.5620 -0.5890 

8 -0.2217 -0.0821 0.2450 -0.7050 0.7130 -0.2990 -0.5610 -0.5870 

9 -0.2193 -0.0792 0.2460 -0.7050 0.7130 -0.3000 -0.5620 -0.5880 

10 -0.2176 -0.0786 0.2450 -0.7050 0.7120 -0.3010 -0.5620 -0.5880 

11 -0.2187 -0.0789 0.2450 -0.7050 0.7120 -0.3010 -0.5620 -0.5880 

12 -0.2170 -0.0775 0.2450 -0.7050 0.7120 -0.3010 -0.5630 -0.5890 

13 -0.2179 -0.0782 0.2460 -0.7050 0.7120 -0.3010 -0.5630 -0.5880 

14 -0.2176 -0.0785 0.2460 -0.7050 0.7120 -0.3010 -0.5620 -0.5880 

15 -0.2171 -0.0784 0.2440 -0.7050 0.7120 -0.3010 -0.5620 -0.5880 

16 -0.2204 -0.0800 0.2480 -0.7050 0.7130 -0.2990 -0.5610 -0.5870 

17 -0.2181 -0.0787 0.2450 -0.7050 0.7120 -0.3010 -0.5620 -0.5880 

18 -0.2193 -0.0794 0.2460 -0.7050 0.7130 -0.3000 -0.5620 -0.5880 

19 -0.2188 -0.0793 0.2450 -0.7050 0.7120 -0.3000 -0.5620 -0.5880 

20 -0.2190 -0.0791 0.2470 -0.7050 0.7130 -0.3000 -0.5620 -0.5880 

21 -0.2164 -0.0769 0.2560 -0.5610 0.7180 -0.2940 -0.5700 -0.5960 

22 -0.2178 -0.0784 0.2450 -0.7050 0.7120 -0.3010 -0.5620 -0.5880 

 

Solvent-accessible surface bounded molecular 

volume and van der Waals-surface-bounded 

molecular volume calculations are based on a grid 

method derived by Bodor et al., using the atomic 

radii of Gavezotti.50,51  

Hydration energy is a key factor determining 

the stability of different molecular conformations 

in water solutions. 

LogP is used to predict the solubility of oral 

drugs; this is done by partitioning the molecule 

between water and the hydrophobic solvent n-

octanol, and determining the P value as the ratio of 

the concentration of the compound in n-octanol and 

that in water. If logP increases, solubility in water 

decreases so absorption decreases. On one hand, a 

negative value for logP indicates that the compound 

is too hydrophilic. So it has good aqueous-solubility, 

better gastric tolerance and efficient elimination 

through the kidneys. On the other hand, a positive 

value for logP indicates that the compound is too 

lipophilic. So it has a good permeability through a 

biological membrane, a better binding to plasma 

proteins, elimination by metabolism but a poor 

solubility and gastric tolerance.52 

Compound (8) is expected to have the highest 
hydrophilicity because of its logP value, which 
implies that this compound will have good 
aqueous-solubility, better gastric tolerance and 
efficient elimination through the kidneys whereas 

compound (17) will be the most lipophilic, this 
implies that this compound will have good 
permeability across the cell membrane. We 
observe that polarizability data are approximately 
proportional to molecular volume and surface. 
Compound number 20 shows the maximum value 
of both polarizability (43.12 Å³) and this 
compound has also high values of molecular 
weight (387.45 amu), volume (1069.86 Å³) and 
surface (633.37 Å2). Compound 14 indicates  
the maximum absolute value of Hydration energy 
(12.02 kcal/mol).  Regarding compound  
17, it shows the minimum absolute value  
(4.55 kcal/mol). In fact, the hydrophobic majority 
molecules of thiazolidine-2,4-dione derivatives 
lead to the decrease of the hydration energy. 
Contrariwise, the presence of hydrophilic groups in 
the compound (14), having one (HBD): (1 NH) 
and seven (HBA): (five O, 1N and 1 S) leads to the 
increase of the hydration energy. 

Energies of the HOMO and LUMO are very 
popular quantum chemical descriptors. The energy 
of the HOMO is directly related to the ionization 
potential and characterizes the susceptibility of the 
molecule toward attack by electrophiles. The 
energy of the LUMO is directly related to the 
electron affinity and characterizes the 
susceptibility of the molecule toward attack by 
nucleophiles. Both the HOMO and the LUMO 
energies are important in radical reactions.33 
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Among the various substitutes that we have 

added each time to the thiazolidine-2, 4-dione and 

by the calculations that we have performed, it was 

found that the compound 2 (5-(4-(2-

morpholinoethoxy) benzylidene) thiazolidine-2,4-

dione) has the lowest energy gap HOMO-LUMO 

(0.1315 au), so the compound (2) is predicted to be 

the most reactive with smaller HOMO–LUMO 

energy gap of all thiazolidine-2,4-dione derivatives 

systems.  

Quantitative structure-activity  

relationships studies 

In this part, we have studied the correlation of 

the biological activities with the physicochemical 

and quantum parameters of the thiazolidine-2,4-

dione derivatives. 

Multiple linear regressions MLR 

Multiple linear regression (MLR) analyses were 

used to find the relationship between molecular 

descriptors and inhibition of 15-PGDH activity. 

The derived MLR QSAR models are 

represented by the following equation (1): 

pIC 50 = –1221.168 – 0.110 SAG + 0.050 MV – 

0.632 Pol + 0.403 HE + 0.096 MV –  

–181.927 EHOMO + 413.380 ELUMO + 53.045 qN3 + 

+ 1708.204 qC5 + 786.080 qO7 

n = 22, R2 = 0.9623, R2
pred = 0.7839, S = 0.1859,  

F = 13.9250 

The model fulfills (equation 1) the selection 

criteria’s such as r2 > 0.6 (0.9623) explains 96.2% 

variance for inhibition of 15-PGDH activity 

between descriptors (SAG, MV, Pol, HE, MW,  

EHOMO, ELUMO, qN3, qO7, qC5 and qC4), with low 

standard error of squared correlation coefficient S 

< 0.3 (0.1859)  show the relative good fitness of 

the model and the value of  F (13.9250) is greater 

than tabulated F value show the  statistical 

significance of the regression model, note that  the 

calculated of F is determined with  a confidence 

limit superior to 95% for this model. 

In the equation of pIC50, the negative 

coefficient of SAG explains that any increase in 

the surface area grid of the compounds causes a 

decrease in the biological activity, and the positive 

coefficients of MW and MV explain that any 

increase in molecular weight and molecular 

volume of the compounds causes an increase in the 

biological activity. 

It can be observed that high coefficients of 

atomic charges on atoms C4, O7 and N3 (qC4, qO7 

and qN3 respectively) and coefficients of ELUMO, 

thus, lead to increasing the inhibition activity of 

15-PGDH. 

The charges allowed a physical explanation and 

electronic molecular properties contributing to 

inhibition of 15-PGDH potency as the electronic 

character related directly to the electron distribution 

of interacting molecule at the site active.  

For validation of the model, we plot in (Fig. 2) the 

experimental activities against the predicted values as 

determined by equation (1). We can observe that the 

predicted pIC50 values are in an acceptable agreement 

and regular distribution with experimental ones with 

R2 = 0.962 and R2
Pred = 0.7839. 

As can be seen, the QSAR model has good 

statistical quality with low prediction error. 

 
Fig. 2 – Plots of predicted versus experimentally observed  

15-PGDH inhibitor activity using MLR. 

Exp. pIC50 – experimental values of the biological activity; 

predicted pIC50: Predicted values of the biological activity. 

Artificial neural networks 

ANN is artificial system simulating the function 

of the human brain. Three components constitute a 

neural network: the processing elements or nodes, 

the topology of the connections between the nodes, 

and the learning rule by which new information is 

encoded in the network. While there are a number 

of different ANN models, the most frequently used 

type of ANN in QSAR is the three-layered feed-

forward network.53  

In order to increase the probability of good 

characterization of studied compounds, artificial 

neural networks (ANN) can be used to generate 

predictive models of quantitative structure-activity 

relationships (QSAR) between a set of molecular 

descriptors obtained from the MLR, and observed 

activity. The ANN calculated activities model was 
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developed using the properties of several studied 

compounds.54,55 

In this work, ANN contained eleven inputs 

corresponding to the eleven descriptors selected 

from the correlation matrix, three hidden neurons, 

and one output neuron which is pIC50 (Fig. 3). The 

number of artificial neurons in the hidden layer 

were adjusted experimentally,56 three neurons in the 

hidden layer were permitted to attain the best 

correlation between experimental and predicted 

data. Then, the ANN was trained using the Gauss-

Newton method. A good correlation between 

experimental and predicted pIC50 by ANN is found. 

This is shown in Fig. 4, and illustrated by R2 and 

R2
Pred values of R2 = 0.9963 and R2

Pred = 0.6324. 

From both results of training and test sets  

(Fig. 4), we can conclude that the ANN model with 

(11-3-1) architecture can establish a satisfactory 

relationship between the eleven descriptors and the 

inhibition activity of 15-PGDH. For instance, all 

test molecules (5, 10, 14 and 17) are in good 

agreement with the two models. 

The predicted activities (MLR, ANN) using by 

JMP regression method are listed in Table 3. 

 

 

Fig. 3 – Structure of ANN. 

 
Fig. 4 – Correlation of experimental and predicted pIC50  

as calculated by ANN. 

 

Table 3 

Experimental and predicted (MLR and ANN) activities of thiazolidine-2,4-dione derivatives 

Compounds pIC50 exp. pIC50pred(MLR) pIC50pred(ANN) 

1 7.508 7.484 7.388 

2 6.146 6.150 6.156 

3 7.220 7.230 7.268 

4 5.903 5.868 5.917 

5 6.180 6.351 6.044 

6 5.430 5.519 5.451 

7 6.125 6.183 6.129 

8 6.200 6.186 6.249 

9 6.542 6.555 6.564 

10 6.935 6.755 7.281 

11 6.050 5.962 6.079 

12 6.276 6.256 6.231 

13 6.634 6.775 6.605 

14 6.598 6.562 6.178 

15 7.347 7.345 7.347 

16 6.906 6.972 6.930 

17 7.283 7.363 7.452 

18 6.660 6.738 6.626 

19 6.207 6.155 6.181 

20 6.090 5.997 6.107 

21 6.280 6.280 6.278 

22 7.292 7.126 7.308 

   pIC50 exp. – experimental values of the biological activity; 

                   pIC50 pred. – predicted values of the biological activity (MLR and ANN). The following parameters were carried out  

using the software JMP 8.0.242 
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External Validation 

To estimate the predictive power of a QSAR 

model, Golbraikh and Tropsha recommended the 

use of the following statistical parameters using the 

test set.57,58 The predictive abilities of the best 

MLR and ANN were tested (Table 4) using the 

Golbraikh-Tropsha criteria and the R2
pred test. 

All the calculated parameters indicated the models 

(MLR and ANN) have good predictive power. 

Analyzing the results of the external test set listed in 

Table 3 (which is in red), it could be observed that all 

the Golbraikh-Tropsha criteria were fulfilled. 

 
Table 4 

Predictive power results for the external test set; Golbraikh and Tropsha criteria 

Model R2
pred K K’ Ro2 R’o2 (R2- Ro2)/R2 (R2- R’o2)/ R2 |Ro2– R’o| 

MLR 0.7839 0.9970 1.0018 0.9989 0.9993 –0.0183 –0.0185 –0.0004 

ANN 0.6324 0.9980 1.0001 0.9996 0.9999 –0.0022 –0.0024 –0.0003 

 > 0.6 > 0.85 < 1.15 Close to R2 Close to R2 < 0.1 < 0.1 < 0.3 

      R2
predis the predicted correlation coefficient. 

      Ro2 and r’o2 are the squared correlation coefficient. 

      K and K’ are the slopes of regression lines through the origin for fits to experimental and predicted data respectively. 

 

The external predictability of the selected 

model was also checked by rm as proposed by Roy 

Paul (2008)58 and the different r2
m values were 

calculated using equations. 

The external predictability of the selected 

model was also checked by concordance 

correlation coefficient (CCC), as proposed by 

Gramatica et al.59  

 
Table 5 

Validation characteristics of the developed model according to r2
m metrics and concordance correlation coefficient 

r2
m parameter Concordance correlation coefficient 

Model r2
m r’2

m CCC 

MLR 0.7781 0.7771 0.9158 

ANN 0.9280 0.9253 0.8765 

 > 0.5 > 0.5 > 0.85 

     r2
m closeness between the R2 and Ro2 determination coefficients 

      r2’
m closeness between the R2 and Ro’2 determination coefficients 

 

All parameters in (Table 5) meet the criteria of 

r2
m metrics and concordance correlation coefficient 

and extend more efficient evidence of external 

predictability of the generated QSAR. 

CONCLUSION 

In the present work, we have studied the 

correlation of the biological activities with the 

physicochemical and quantum parameters of the 

thiazolidine-2,4-dione derivatives. Our results 

suggest a MLR QSAR model based of the 

following descriptors: HE, POL, SAG, MV, 

EHOMO, ELUMO, qN3, qO7, qC5 and qC4 for the specific 

activity of inhibition of 15-PGDH. 

The model MLR fulfills the selection criteria’s 

such as r2 > 0.6 (0.9623) explains 96.2% variance 

for inhibition of 15-PGDH activity between 

descriptors (SAG, MV, Pol, HE, MW, EHOMO, 

ELUMO, qN3, qO7, qC5 and qC4), with low standard 

error of squared correlation coefficient S < 0.3 

(0.1859) show the relative good fitness of the model 

Thus, grace to QSAR studies, especially with the 

ANN that has allowed us to improve the correlation 

between the observed biological activity and that 

predicted, we could enjoy the performance of the 

predictive power of this model to explore and 

propose new molecules could be active. 

From both results of training and test sets (R2 = 

0.9963 and R2
Pred = 0.6324.), we can conclude that 

the ANN model with (11-3-1) architecture can 

establish a satisfactory relationship between the 

eleven descriptors and the inhibition activity of 15-

PGDH. 

Furthermore, we can conclude that studied 

descriptors, which are sufficiently rich in chemical 

and topological information to encode the 

structural feature and have a great influence on the 
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activity may be used with other descriptors for the 

development of predictive QSAR models. 

The model was validated using the external test set. 

The QSAR model proposed in this work is 

expected to be a useful tool in the conception of 

novel active molecules. 
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