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The advection-Diffusion Equation in three dimensions was solved using the 

Separation variable, Substitution and Laplace transform methods, taking into 

account that eddy diffusivity along the horizontal, lateral coordinates and wind 

velocity are constant respectively, while the vertical eddy diffusivity is a function 

of the vertical height z, Monin-Obukhov length L friction velocity at different 

emission rate and operation of iodine (I-131) in an unstable condition. We took the 

measured data from Inshas, Cairo, Egypt and compared the concentration of the 

calculated results with the results obtained from the solution equation at heights of 

0.7, 27, and 43 meters. We found that all models are within a factor of two with 

the observed data from statistical evaluations in unstable conditions, we found that 

all models fell into a factor of two with the observed data. Whereas with NMSE 

and FB, the current models correlate better with the observed data. 

 

 
INTRODUCTION 

Modelling the atmospheric dispersion of volatile 
and radioactive gas emissions has a significant 
contribution to various stages of nuclear technology 
safety standards, as the majority of industrialized 
developing countries are increasingly concerned about 
air pollution. The main causes of air pollution include 
increased use of automobiles, expansion of industrial 
facilities, and decreased recycling of industrial waste. 
Air pollution modelling was relevant to many other 
fields, from the study of short-term dispersal of species 
(usually an accidental release in the case of an 
industrial hazard) to atmospheric chemistry and 
climate change. Mechanisms, removal mechanisms, 
topographic features.1 

The 1954 Monin and Obukhov hypothesis for 
atmospheric turbulence correctly predicted vertical 
patterns of turbulence strength. They began by 
combining the vertical turbulent momentum and 
heat fluxes into a single quantity with a length 
dimension, the so-called Monin-Obukhov length.  

The air dispersion modeling for the emission of 
radioactive gases and volatiles made a significant 
contribution to the nuclear technology safety 
requirements at various phases, as discussed.2 The 
potential harm from a nuclear power reactor (or 
even a research reactor) was began by solving the 
advection-diffusion equation, as well as the 
dispersion and transport of the radioactive cloud in 
the atmosphere, and eventually the excessive 
radiation exposure of the general public. Many 
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variables determine the area of the radioactive 
discharge that is affected on the ground or in the 
atmosphere.3 

The power of the amount of radiation released, 

wind speed and direction, temperature, and the 

physical characteristics of the radioactive substance 

that was discharged. A 3D model of the atmosphere 

was presented with energy laws, variable removal 

rates, and wind speeds. The issue of air pollution 

dispersion was tackled analytically with varying 

wind speeds and variable eddy diffusivity for 

modelling atmospheric dispersion was provided.4 

It could be assumed that the mean concentration 

gradient was proportional to the turbulent fluxes of 

atmospheric air pollution.5 Several factors influence 

the area of the ground or the atmosphere that was 

affected by the radioactive discharge.6 In the 

environment of a fundamental rectangle box, the 

transport equation's mathematical model has a 

statistical value. 7 Although several limitations were 

revealed, the Monin-Obukhov theory remains the 

most trustworthy foundation for all branches of 

atmospheric modelling by comparison to multiple 

measurements and advanced computational fluid 

dynamics data sets.8 

The three-dimensional rounding equation, a 

successful digital method, has been developed. 

These schemas' correctness and effectiveness were 

described as two test problems. It is possible to use 

the suggested techniques for physics and geometry 

nonlinear problems.9 

In this paper, iodine concentration I131 was 

analyzed at effective heights of 0.7, 27, and 43 

meters above the ground with variable vertical eddy 

diffusivity, but constant wind speed and horizontal 

and lateral eddy diffusivity, we analytically solved 

the horizontal diffusion equation in 3D under 

unstable conditions. Velocity and lateral eddy 

horizontal propagation are taken as constant. 

MATERIAL AND METHODS 

The conservation of mass equation, which 

describes advection, turbulent diffusion, and 

chemical reactions, provides the basis for the 

mathematical formulation of the dispersion of air 

pollution gives the following formulation the time-

dependent advection-diffusion equation:10  
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where: C is pollutant concentration (g/m3) at points 

(x, y, z) and u, v, w are components of wind velocity 

(m/s) and K is the eddy diffusivity whose 

components are Kx, Ky, and Kz (m2 /s) along the x, y, 

and z axes respectively, S and R represent the 

internal sources or sinks, and removal terms are 

ignored, so that S = 0 and R = 0. x, y, and z are 

horizontal distances from the source. Lateral 

distance from the source (m) and vertical distance 

above the source (m) the turbulence contribution 

appears on the right-hand side. As the average wind 

field changes from hour to hour, the effect is felt in 

the advection terms u ∂C/∂x and v ∂C/∂y on the left-

hand side, which also contributes to variations in 

concentration. Thus, turbulent diffusivities are 

increasing functions of averaging time and z 

represents turbulent diffusion of material in the y 

and z directions, respectively. This represents that 

horizontal advection is much greater than horizontal 

diffusion, so horizontal diffusion is neglected. 

Therefore Eq. (1) is reduced to the time-

dependent advection-diffusion equation in three 

dimensions 
∂C

∂t
+ u

∂C

∂x
− ky

∂2C

∂y2
= kz

∂2C

∂z2
+ Kz

′ ∂C

∂z
 .           (2) 

Equation (2) was solved under the following 

boundary conditions: 

    kz
∂C

  ∂z
= 0  at   z = 0, h           (2-1) 

u C(x, y, z, t) = Qδ(y)δ(z − h)    at   x = 0   (2-2) 

C (x, y, z, t) =0      at    t = 0, 20 s                 (2-3) 
∂C

  ∂y
= 0        at        y = 0, Ly = 0                    (2-4) 

∂C

  ∂x
= 0      at   x = 0     Lx = 100 m           (2-5) 

C(x, y, z, t) = δ(t)δ(y)   at   t, y = 0             (2-6) 

where δ () is the Dirac delta function, Q is the 

emission strength of an elevated point source, and h 

is the effective height of the air pollutant. Condition 

(2-2) states that the air pollutant is released from the 

elevated point source of strength Q. Condition (2-3) 

states that the concentration of the air pollutant is 

zero for x, y, z→ 0. Condition (2-4) states that the 

diffusion flux at the lateral coordinate and large 

distance (Ly) is zero. Condition (2-5) states that the 

diffusion flux at the horizontal coordinate is zero 

and Lx is a large constant value of 100 m. Condition 

(2-6) states that air pollutants are released from the 

elevated point source. In terms of lateral and 

horizontal eddy diffusivity (Kx and Ky = 500 m2/s).11 

While the vertical eddy diffusivity in unstable 

conditions in the form is12 
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𝐾𝑧 = 0.4 𝑢∗ 𝑧 0.74 (1 −
9 𝑧

𝐿
)
−
1
2
    ⁄ . 

Here vertical height (z), Monin-Obukhov length 

(L), and friction velocity (u*) [m/s], h is the effective 

height (0.7 m, 27 m, and 45m). 

To solve Eq. (2), it is assumed that: using the 

variable separation method and assuming the 

experimental result from Eq. (2) as follows: 

 C(x, y, z, t) = C(x, y, t) Z (z)              (3) 

where 

 C(x, y, t) = X (x) Y(y) T (t) ,          (3-1) 

where X (x) a function of just x, Y (y) is a function 

of just y, and T (t) is a function of just t. 

To solved the right-hand side of equation (2) by 

using Eq. (3-1) as follows: deriving equation (3-1) 

with respect to x, y, and t and substituting it into 

equation (2) and dividing by X (x), Y (y), and T (t) 

to equal λ^2, we get the following: 

     
T′(t)

T(t)
+ u

X′(x)

X(x)
− ky

Y′′(y)

Y(y)
 = −λ2         (3-1-1) 

where λ2 is the separation constant of the variables 

x, y, and t. 

Equation (3-1-1) is divided into three equations 

as follows: 

T′(t) + λt
2T(t) = 0         (3-1-1a) 

X′(x) +
λx
2

u
X(x) = 0        (3-1-1b) 

Y′′(y) −
λy
2

Ky
Y(y) = 0 .       (3-1-1c) 

To solve Eq. (3-2-1a): integrating Eq. (3-2-1a) 

with respect to t from 0 to t as follows: 

T(t) = T(0)e− λt
2t              (4) 

where T(0)  is the constant of integration. 

Substituting from Eq. (2-3) at t = 0 in Eq. (4), 

one gets: 

T(0) = 1 .             (4a) 

Substituting from Eq. (2-3) at t = 20 s in Eq. (4), 

one gets 

λt
2 =

1

20
 .             (4b) 

Substituting from Eqs. (4a) and (4b) in Eq. (4), 

one gets: 

T(t) = e− 
t

20               (5) 

To solve Eq. (3-1-1b): integrating Eq. (3-1-1b) 

with respect to x from 0 to x, we get: 

X(x) = X(0)e− 
λx
2

u
x
              (6) 

where X(0) is the constant of integration. 

Substituting from Eq. (2-2) at x = 0 in Eq. (6), 

one gets: 

X(0) =
Qδ(y)(z−h)

u             (6a) 

Substituting from Eq. (2-5) at x= Lx in Eq. (6), 

one gets: 

λx = √
u

x
 
. 
            (6b) 

Substituting from Eqns. (6a) and (6b), we get 

that: 

X(x) =
Qδ(y)(z−h)

u
e− 1.              (7) 

To solve equation (3-1-1c): using the Laplace 

transform on the Eq. (3-1-1c) with respect to y, it 

becomes as follows: 

Y̌(y) =
sY(o)−Ỳ(o)

(s2−
λy
2

Ky
)

              (8) 

where: 
 

Y̌(y) = Lp{Y(y); y → s},     Lp (
∂2Y(y)

∂y2
) = s2Y̌(y) − sY(0) − Ý(0) 

 

Substituting from Eq. (2-4) )  in Eq.(8), one gets: 

        Ỳ(o) = 0.             (8a) 

Substituting from Eq. (8a) )  in Eq.(8), one gets: 

Y̌(y) =
sY(o)

(s2−
λy
2

Ky
)

 .                    (8b) 

Using inverse Laplace transforms on Eq, (8b) 

becomes: 

                                    Y(y) = Y(0) cosh (
λy

√Ky
 y) =Y(0)(

e

λy

√Ky
 y

+e

−λy

√Ky
 y

2
)                           (8c) 

where cosh (
λy

√Ky
 y) =

e

λy

√Ky
 y

+e

− λy

√Ky
 y

2
. 

 

Then: 

Y(y) = Y(0)(
e

λy

√Ky
 y

+e

−λy

√Ky
 y

2
) .              (9) 

Substituting from Eq. (2-4)  at y = Ly  in Eq. (9), 

one gets: 

λy = 
√Ky

2Ly
             (9a) 

Substituting from Eq. (2-6)  at y = 0  in Eq. (9), 
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one gets: 

Y(0) = δ(t)δ(y)         .            (9b) 

Substituting from Eqs. (9a) and (9b) in Eq. (9), 

one gets: 

Y(y) = δ(t)δ(y)       (
e

λy

√Ky
 y

+e

−λy

√Ky
 y

2
)            (10) 

Substituting fromEqns. (5), (7) and (10)  in  

Eq. (3) becomes: 

 

C(x, y, t) = 
Qδ(y)(z−h)δ(t)δ(y)       

u
[Exp(−(

λx
2

u
+

t

20
+

 λyy

2√Ky
))

 

]                                   (10-1) 

 
 

The following are the steps to solve the left side 

of Eq. (2), where: ∵ kz
∂2C

∂z2
= −

∂Kz
∂z

∂C

∂z
 

 

Kz = 0.4 u∗ z 0.74 (1 −
9 z

L
)
−
1
2
    ,⁄
∂Kz
∂z

=
0.4u∗
0.74

(

 
 (2L − 27z)

2L√1 −
9z
L )

  and 
∂Kz
Kz ∂z

=
(2L − 27z)

2z(L − 9z)
 

∴ 0.4 u∗ z 0.74 (1 −
9 z

L
)
−
1
2

⁄
∂2Z(z)

∂z2
= −

0.4u∗
0.74

(

 
 (2L − 27z)

2L√1 −
9z
L )

 (
∂Z(z)

∂z
) 

 
∂2Z(z)

∂z2
=
(27z+2L)

2z(9z+L)
(
∂Z(z)

∂z
)               (11) 

Using the substitution approach, because z is not 

present in Eq. (11),: 
∂Z(z)

∂z
= P,

∂

∂z
(
∂Z(z)

∂z
) =

∂P

∂z
          (11a) 

Substitution from Eq. (11a) in Eq. (5) results in: 
∂P

∂z
= (

(27z+2L)

2z(9z+L)
)P →

∂P

P
= (

(27z+2L)

2z(9z+L)
)∂z    (11b) 

P = c1e
∫(
(27z+2L)

2z(9z+L)
)∂z

          (11c) 

When the integral is solved with partial 

fractions, ∫ (
(27z+2L)

2z(9z+L)
)∂z become:  

∫ (
(27z+2L)

2z(9z+L)
)∂z = (ln (z) + ln√(L − 9z)) −

ln (√L)             (11d) 

When Eq.(11d) is substituted in Eq.(11c), it 

results 

P = c1 (z√
(L−9z)

L
)           (11e) 

Substituting from Eq. (11a) in Eq.(11e) it 

becomes: 
∂Z(z)

∂z
= c1 (

z√L−9z

√L
)          (11 f) 

Substituting from Eq. (2-1) to Eq. (11 f), we get 

: 

c1 = 1           (11g) 

Substituting from Eq. (11g) in Eq. (11f) 

becomes: 
∂Z(z)

∂z
= (

z√L−9z

√L
)         (11h) 

The integrated equation (11h) with respect to z 

becomes: 

        Z(z) = hz −
6 √L−9z
3

−21.6 √L−9z
5

√L
+ c2          (12) 

substitution from Eq. (2-3) in Eq. (12) becomes 

c2 = 0            (12a) 

Eq. (12) becomes: 

Z(z) = hz −
6 √L−9z
3

−21.6 √L−9z
5

√L
            (13) 

Substituting from Eqs. (10-1) and Eq. (13) in Eq. 

(3) to get the general Eq. (2) as follows:: 

 

C (x,y.z,t)

Q
=   

Qδ(y)(z−h)δ(t)δ(y)       

u
[Exp (−(

λx
2

u
+

t

20
+

 λyy

2√Ky
))

 

] (  hz −
6 √L−9z
3

−21.6 √L−9z
5

√L
 ) ;                 (14) 

 

 

where the Dirac delta function,13 is δ(z) =
1

π
∑ cosn(z) +

1

2
N
n=1   and the is the 

radioactive decay for the specified nuclide, λ' is a 

decay distance of I-131 equals 9.9510–7. 

RESULTS AND DISCUSSION 

Calculate the iodine concentration using the 

analytical solution that is produced (I131). The 

/x ue −
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information used came from research done to gather 

air samples in erratic environments. At 0.7, 27, and 

43 meters above the ground, samples were taken, 

and emissions were released at those same heights. 

With respect to (I131), the decay constant is 9.95·10–

7·s–1. Emission rates for I-131.he decay constant for 

(I131). emissions levels for (I-131). Comparison of 

the anticipated and various procedures for n = 1:13 

at t = 20 minutes.14 The association between the 

measured concentration and the actual 

concentration of iodine I131 at various downwind 

distances and effective heights (0.7, 27, and 43 m) 

is shown in Table 1. Figure 1 shows the comparison 

between the calculated results and the observed data 

at heights (0, 7, 27, and 43 meters; the straight line 

indicates one, while the dashed lines refer to a factor 

of two. Figure 2. shows the results calculated and 

observed with the downwind distance at heights of 

0.7, 27, and 43 meters. The red line represents the 

observed concentration, the green line represents a 

height of 0.7 meters, the blue line represents the 

concentration at 27 meters, and the yellow line 

represents the concentration at 43 meters. This 

comparison of results and distance at various 

heights is shown. It crosses in two places (134, and 

92 meters. 
 

Table 1 

Relation  between the actual and estimated concentrations at a different downwind distance  at effective height (0.7m) and runs 

Exp. Emission Rate Distance(m) 
Concentration (Bq/m3) 

Observed Predicated 

1 28114286 92 0.025 0.024 

2 28700000 96 0.037 0.032 

3 1171429 97 0.090 0.085 

4 12885714 98 0.200 0.196 

5 13471429 99 0.270 0.263 

6 140557143 100 0.190 0.186 

7 27528571 115 0.450 0.47 

8 28524286 132 0.120 0.119 

9 28260714 134 0.030 0.027 

10 2928571.4 165 0.420 0.424 

11 4100000 184 0.420 0.417 

12 1171428.6 200 0.670 0.668 

13 2342857.1 300 0.670 0.665 

 

Table 2 

Relation  between the actual and estimated concentrations at a different downwind distance at effective height (27m) and runs. 

Exp. Emission rate Distance(m) 
Concentration(Bq/m3) 

Observed Predicated 

1 28114286 92 0.025 0.033 

2 28700000 96 0.037 0.03 

3 1171429 97 0.090 0.094 

4 12885714 98 0.200 0.194 

5 13471429 99 0.270 0.17 

6 140557143 100 0.190 0.191 

7 27528571 115 0.450 0.452 

8 28524286 132 0.120 0.196 

9 28260714 134 0.030 0.027 

10 2928571.4 165 0.420 0.437 

11 4100000 184 0.420 0.318 

12 1171428.6 200 0.670 0.624 

13 2342857.1 300 0.670 0.653 



512 Khaled S. M. Essa and Sawsan I. M. El Said  

Table 3 

Relation  between the actual and estimated concentrations at a different downwind distance at effective height (43m) and runs 

Exp. Emission rate Distance(m) 
Concentration(Bq/m3) 

Observed Predicated 

1 28114286 92 0.025 0.033 

2 28700000 96 0.037 0.03 

3 1171429 97 0.090 0.094 

4 12885714 98 0.200 0.194 

5 13471429 99 0.270 0.17 

6 140557143 100 0.190 0.191 

7 27528571 115 0.450 0.452 

8 28524286 132 0.120 0.196 

9 28260714 134 0.030 0.027 

10 2928571.4 165 0.420 0.437 

11 4100000 184 0.420 0.318 

12 1171428.6 200 0.670 0.624 

13 2342857.1 300 0.670 0.653 

 

 
 

Fig. 1 – shows the comparison between the calculated results and the observed data at heights 0, 7, 27, and 43 meters; the straight 

line indicates one - one, while the dashed lines refer to a factor of two. 

 

 
Fig. 2 – The results calculated and observed with the downwind wind distance at heights of 0.7, 27, and 43 meters. The red line 

represents the observed concentration, the green line represents a height of 0.7 meters, the blue line represents the concentration at 27 

meters, and the yellow line represents the concentration at 43 metres. 
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STATISTICAL ANALYSIS 

The statistical method is presented and a 

comparison will be made between the analytical and 

statistical results.15 
 Normalized Mean Square Error  

(NMSE) =
(Cp − Co)

2

(CpCo)
 

      Fraction Bias  

(FB) =
(Co − Cp)

[0.5(Co + Cp)]
 

 
  Correlation Coefficient  

(COR) =
1

Nm
∑(Cpi − Cp) ×

(Coi − Co)

(σpσo

Nm

i=1

 

 Factor of Two  

(FAC2) = 0.5 ≤
Cp

Co
≤ 2.0 

The standard deviations of Cp and Co are 

represented by p and o, respectively. Here, the over-

bar measurements show the average totals.  

The following idealised performance would 

characterise the ideal model:  = FB = 0, and COR = 

FAC2 = 1. 

 
Table 4 

Comparison of different models according to standard statistical performance measurement 

Models NMSR FB COR FAC2 

Model at h=0.7m 0.005 0.12 0.99 0.89 

Model at h=27m 0.008 0.05 0.96 0.95 

Model at h=43m 0.002 0.03 0.93 0.97 

 

Take note of how closely the models we 

obtained match the observed data by a factor of two. 

The current models correlate better with the 

observed data as compared to previous models, 

according to statistical analyses in NMSE and FB 

under unstable conditions. 

CONCLUSIONS 

The equation for diffusion in three dimensions 

was solved using the separation variable and Laplace 

transform methods, taking into account that eddy 

diffusivity along the horizontal and lateral 

coordinates and wind velocity are respectively 

constant, while the vertical eddy diffusivity is a 

function of the vertical height z, and the length of 

Monin-Obukhov L has different vertical friction 

velocity, emission rate and operation of Iodine (I-

131) in an unstable condition. We took the measured 

data from Inshas, Cairo, Egypt and compared the 

concentration of the calculated results with the results 

obtained from the solution equation at heights of 0.7, 

27, and 43 meters. We found that all results are within 

a factor of two with the observed data. 

From statistical evaluations in unstable 

conditions, we found that all models fell into a 

factor of two with the observed data. Whereas with 

NMSE and FB, the current models correlate better 

with the observed data. 
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