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Solid sodium (or potassium) aroxides with various substituents derived from phenols (1a = phenol, 1b = guaiacol,  
1c = 2,6-dimethoxyphenol, 1d = eugenol, 1e = (cis+trans) isoeugenol, 1f = 4-(3-oxobutyl)-phenol) and g = Etoposide 
cytostatic) were reacted with 2-(α-bromoacetyl)-phenoxathiin (2) in the presence of crown ethers (15C5 or 18C6, 
respectively). The resulting fluorescent title compounds 3a–g were characterized by 1H-NMR and 13C-NMR. The 
chromatographic behavior of compounds 3a–g was investigated by TLC and reverse-phase-TLC. Calculations for the 
hydrophobicity of the new compounds are reported. 

INTRODUCTION1 

Phenoxathiin derivatives exhibit interesting biological activities1-7 and fluorescent properties.8-15 We present 
the synthesis and some physico-chemical properties of seven new ethers 3a–g (Tab. 1) with 2-(α-aryloxyacetyl)-
phenoxathiin structure. Compounds 3a–g were obtained from solid aroxides of the phenols 1a–g (Tab. 2) with 2-
(α-bromoacetyl)-phenoxathiin 2, in presence of crown ethers suitable for the cation in the aroxide anion. All 
phenols 1a–g are biologically active compounds, being either natural compounds or drug substructures: 
compound 1f is an important component for flavors (“raspberry ketone”) and 1g is the cytostatic Etoposide.16 

Table 1 

The new compounds 3a–g  

S

O

C
CH2

O
3a-g

OAr2
3

456
7

8
9 10 11

12
1

 
Compound –Ar in the compound 

 
3a 13

14 15
16

18 17  
Table 1 (continues) 

                                                 
*Corresponding author: titelconstantinescu@yahoo.com 



654 Ana Cristina Răduţiu et al. 

 

Table 1 (continued) 
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RESULTS AND DISCUSSION 

Synthesis of compounds 3a–g 

The starting materials were phenols 1a–g (Table 2) and the bromo-ketone 2. 
For the synthesis of the compounds 3a–g (Tab. 1) we used a two-step procedure described by eqs. 1 

and 2.  
(i) Phenols 1a, 1c, 1g (Tab. 2) were converted into the corresponding sodium aroxides,17 and the 

phenols 1b, 1d-f (Tab. 2) into the corresponding potassium aroxides, which were dissolved in methylene 
chloride, using a crown ether (CE) specific for the cation (15C5 for Na+, 18C6 for K+ respectively). The 
corresponding supramolecular hydrophobic complex [CE…M]+ArO– was formed (eq. 1), where the anion 
ArO– becomes a very reactive nucleophilic partner.18,19 
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(ii) Then, the addition, at room temperature, of the halide derivative 2 (PT-CO-CH2Br, where PT 
means 2-phenoxathiinyl) leads to the fluorescent ethers 3a–g (PT-CO-CH2OAr, eq. 2) via an SN2 process. 
The reaction was monitored for 24 to 96 hours, from case to case, by thin layer chromatography (TLC) and 
by fluorescence at 366 nm.  

(iii) Then the reaction mixture was processed through liquid/liquid extractions, after which the 
compounds were isolated and purified by preparative TLC on silica gel. 

ArO-M+
(s) + CE(o) [CE......M]+ArO-

(o)

[CE......M]+ArO-
(o) + PT−CO-CH2Br(o) PT-CO-CH2-OAr(o) + [CE......M]+Br-

(o)

eq. 1

eq. 2
 

Subscripts s and o indicate solid and organic phases, respectively. 
 

Table 2  

The phenols 1a-f used in synthesis 
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Guaiacol, 1b OCH3 H H 
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Isoeugenol, 1e OCH3 H HC=CH-CH3 (E + Z) 
4-(3-Oxobutyl)-phenol, 1f H H H2C-CH2-CO-CH3 
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NMR Spectra of compounds 3a–g 

The NMR data confirmed the structures of the new compounds 3a–g by identifying: (i) the presence of 
the phenoxathiin moiety; (ii) the presence of the phenyl ring and of the substituents (MeO groups for 3b–e 
and 3g in C-14, C-18 positions; allyl in C-16 position for 3d, propenyl for 3e, butanone for 3f, and the 
groups of cytostatic Etoposide moiety for 3g); (iii) the presence of the methylene (C-12) and carbonyl (C-11) 
groups in the fragment –O–CH2–CO– from the bromo-ketone 2. In the 13C-NMR spectra the signal of the C-12 
carbon atom of the methylene group is shifted to higher chemical shift values, depending of the number and 
position of MeO groups (C-14 and C-18) on the phenyl ring (probably due to steric hindrance): δ (C-12) 3a, 
3f< δ (C-12) 3b, 3d, 3e< δ (C-12) 3c, 3g. 

 
Table 3 

1H-NMR and 13C-NMR data of compounds 3a–g 

Compound NMR-spectra in CDCl3 a,b (δ, ppm, J Hz) 
 
 

3a 

1H-NMR: 5.16 (s, 2H, H-12); 6.94 (dd, 2H, H-14,18, 1.0, 8.8); 6.92-7.08 (m, 5H, H-4,6,8,9,16); 
7.13 (ddd, 1H, H-7, 2.3, 6.6, 8.0); 7.29 (dd, 2H, H-15,17, 7.4, 8.8); 7.77 (dd, 1H, H-3, 2.1, 8.4); 
7.74 (d, 1H, H-1, 2.1). 
13C-NMR: 192.72 (C-11); 157.93 (Cq); 156.05 (Cq); 150.88 (Cq); 131.17 (Cq); 120.90 (Cq); 
118.63 (Cq); 129.62 (CH); 128.43 (CH); 128.05 (CH); 127.16 (CH); 126.79 (CH); 125.23 (CH); 
121.76 (CH); 117.87 (CH); 117.83 (CH); 114.82 (CH); 70.84 (C-12). 

 
 

3b 

1H-NMR: 3.88 (s, 3H, H-19); 5.21 (s, 2H, H-12); 6.85 (m, 2H, H-15,18); 7.08- 6.88 (m, 6H, 
H-4,6,8,9,16,17); 7.13 (ddd, 1H, H-7, 2.3, 6.7, 8.0); 7.79 (dd, 1H, H-3, 2.1, 7.6); 7.81 (d, 1H, 
H-1, 2.1); 
13C-NMR: 192.91 (C-11); 155.93 (Cq); 150.92 (Cq); 149.89 (Cq); 147.43 (Cq); 131.27 (Cq); 
120.71 (Cq); 118.70 (Cq); 128.48 (CH); 128.00 (CH); 127.32 (CH); 126.77 (CH); 125.18 (CH); 
122.66 (CH); 120.84 (CH); 117.86 (CH); 117.76 (CH); 115.13 (CH); 112.29 (CH); 72.40 (C-12); 
55.91 (C-19). 

 
 

3c 

1H-NMR: 3.82 (s, 6H, H-19,20); 5.06 (s, 2H, H-12); 6.56 (d, 2H, H-15,17, 8.4); 7.09-6.95 (m, 
5H, H-4,6,8,9,16); 7.09-6.96 (m, 5H, H-4,6,8,9,16); 7.13 (ddd, 1H, H-7, 2.1, 6.8, 8.0); 7.86 (dd, 
1H, H-3, 2.0, 8.5); 7.93 (d, 1H, H-1, 2.0). 
13C-NMR: 193.46 (Cq); 155.61 (Cq); 153.22 (C-14-18); 151.06 (Cq); 131.86 (Cq); 120.22 (Cq); 
118.94 (Cq); 128.76 (CH); 127.93 (CH); 127.81 (CH); 126.75 (CH); 125.07 (CH); 124.23 (CH); 
117.85 (CH); 117.60 (CH); 105.33 (CH); 75.55 (C-12); 56.05 (C-19-20).  

 
 
 

3d 

1H-NMR: 3.32 (dt, 2H, H-20, 6.7, 1.7); 3.87 (s, 3H, H-19); 5.07 (dq, 1H, H-22-trans, 18.8, 1.7); 
5.08 (dq, 1H, H-22-cis, 8.6, 1.7); 5.18 (s, 2H, H-12); 5.94 (tdd, 1H, H-21, 6.7, 8.6, 18.8); 6.66 
(dd, 1H, H-17, 2.0, 8.1); 6.73 (d, 1H, H-15, 2.0); 6.77 (d, 1H, H-18, 8.1); 7.13 (ddd, 1H, H-7, 2.1, 
6.8, 8.0); 7.09- 6.96 (m, 4H, H-4,6,8,9); 7.79 (dd, 1H, H-3, 2.1, 8.6); 7.81 (d, 1H, H-1, 2.1). 
13C-NMR: 193.09 (C-11); 155.92 (Cq); 150.92 (Cq); 149.74 (Cq); 145.74 (Cq); 137.42 (Cq); 
134.65 (Cq); 131.30 (Cq); 120.68 (Cq); 128.49 (CH); 128.00 (CH); 127.34 (CH); 126.77 (CH); 
125.17 (CH); 120.52 (CH); 117.86 (CH); 117.75 (CH); 115.20 (C-21); 115.09 (C-21); 115.20 
(CH); 112.70 (CH); 72.61 (C-12); 55.88 (C-19); 39.83 (C-16). 

 
 
 

3e 

1H-NMR: 7.80 (d, 1H, H-1, 2.1); 7.79 (dd, 1H, H-3, 2.1, 7.9); 7.13 (ddd, 1H, H-7, 2.3, 6.9, 7.9); 
7.08-6.96 (m, 4H, H-4,6,8,9); 6.89 (d, 1H, H-15, 1.9); 6.79 (dd, 1H, H-17, 1.9, 8.3); 6.74 (d, 1H, 
H-18, 8.3); 6.31 (dq, 1H, H-20, 15.7, 1.6); 6.10 (dq, 1H, H-21, 15.7, 6.6); 5.19 (s, 2H, H-12); 
3.89 (s, 3H, H-19); 1.85 (dd, 3H, H-22, 1.6, 6.6). 
13C-NMR: 193.14 (C-11); 155.96 (Cq); 151.12 (Cq); 150.21 (Cq); 146.88 (Cq); 146.81 (Cq); 
133.36 (Cq); 131.70 (Cq); 120.74 (Cq); 130.67 (CH); 128.65 (CH); 127.99 (CH); 127.53 (CH); 
126.80 (CH); 125.16 (CH); 124.61 (CH); 118.80 (CH); 117.89 (CH); 117.72 (CH); 115.88 (CH); 
110.26 (CH); 73.08 (C-12); 56.10 (C-19); 18.16 (C-22). 

 
 

3f 

1H-NMR: 8.04 (dd, 1H, H-3, 8.3, 2.1); 8.01 (d, 1H, H-1, 2.1); 7.41 (ddd, 1H, H-7, 2.2, 6.7, 7.9); 
7.37-7.24 (m, 4H, H-4,6,8,9); 7.30 (d, 2H, H-15,17, 8.6); 7.12 (d, 2H, H-14,18, 8.6); 5.40 (s, 2H, 
H-12); 3.09 (m, 2H, H-20, A2B2 system); 2.98 (m, 2H, H-19, A2B2 system); 2.39 (s, 3H, H-22).
  
13C-NMR: 205.45 (C-21); 192.84 (C-11); 156.41 (Cq); 156.37 (Cq); 156.05 (Cq); 137.29 
(Cq-16); 131.23 (Cq); 120.90 (Cq); 118.64 (Cq); 129.39 (CH); 128.44 (CH); 128.06 (CH); 
127.17 (CH); 126.79 (CH); 125.23 (CH); 117.89 (CH); 117.82 (CH); 114.93 (CH); 114.89 (CH); 
71.07 (C-12); 45.29 (C-19); 30.04 (C-22); 28.91 (C-20). 

Table 3 (continues)
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Table 3 (continued)

 
 
 
 

3g 

1H-NMR: 7.88 (d, 1H, H-1, 2.1); 7.82 (dd, 1H, H-3, 2.1, 8.4); 7.30-6.96 (m, 5H, H-4,6,7,8,9); 
6.83 (s, 1H, H-23 or H-26); 6.54 (s, 1H, H-26 or H-23); 6.24 (s, 2H, H-33); 6.00 (d, 1H, H-15 or 
H-17, 1.3); 5.98 (d, 1H, H-17 or H-15, 1.3); 5.01 (s, 2H, H-12); 4.92 (d, 1H, H-34, 3.4); 4.75 (q, 
1H, H-40, 5.1); 4.63 (d, 1H, H-29, 7.6); 4.60 (d, 1H, H-36, 5.2); 4.41 (dd, 1H, H-31A, AB 
system, 8.9, 10.7); 4.24-4.17 (m, 2H, H-31B, H-35); 3.68-3.23 (m, 5H, H-21-37-38-39); 3.69 (s, 
3H, H-19 or H-20); 3.68 (s, 3H, H-20 or H-19); 2.90 (m, 1H, H-29); 1.39 (d, 3H, H-41, 5.1). 
13C-NMR: 193.50 (C-11); 174.55 (C-32); 155.65 (Cq); 153.47 (Cq); 152.49 (Cq); 151.25 (Cq); 
148.98 (Cq); 147.39 (Cq); 135.69 (Cq); 132.81 (Cq); 132.23 (Cq); 128.59 (Cq); 120.29 (Cq); 
119.14 (Cq); 128.91 (CH); 127.92 (Cq); 126.78 (Cq); 125.05 (Cq); 117.86 (Cq); 117.54 (Cq); 
110.76 (Cq); 109.75 (Cq); 109.15 (Cq); 109.00 (Cq); 102.24 (Cq); 101.62 (C-33); 99.89 (C-40); 
80.01 (C-34); 75.73 (C-12); 75.44 (CH); 74.78 (CH); 73.97 (CH);  73.45 (CH); 68.12 (CH2); 
67.83 (CH2); 66.69 (C-28); 55.47 (C-19-20); 44.06 (C-21); 41.27 (C-30); 37.81 (C-29); 20.27 
(C-41). 

a At about 295K and with TMS as internal standard.  
b The numbering of compounds 3a-g as in Tab. 1. 

Hydrophobicity/hydrophilicity of compounds 3a–g 

The hydrophobicity/hydrophilicity balance of compounds 3a–g is very important for their biomedical 
applications: the hydrophobicity/hydrophilicity determines how substances interact with biomembranes and 
receptors, influencing their bioavailability and biospecificity. The octanol-water partition coefficient (P) and 
its logarithm (log P) are the usual parameters for estimating quantitatively these characteristics,20 and they 
can be measured or computed. In our case, this property for compounds 3a–g was studied experimentally by 
reversed phase TLC (RP-TLC) and compared with phenols 1a–g and compounds 2, 4 (2-acetylphenoxathiin), and 
5 (phenoxathiin). Thus, Rf values were measured, using precoated C18-chain layers as stationary phases and 
different ethanol-water mixtures as mobile phases (Tab. 4). The hydrophobicity was appreciated as a result 
of experimental data depending on RM0 values calculated21-24 with eqs. 3 and 4 were: RM0 (the molecular 
hydrophobicity) is the RM value extrapolated to zero concentration of organic component in the alcohol-water 
mixture; b is the change in the RM value caused by increasing the concentration (K) of the organic component 
in the mobile phase. Statistical analysis involved the correlation coefficient (r), the Fisher parameter25-27 (F), 
and the standard deviation (SD) (Tab. 4). 

 
RM = log(1/Rf -1)     eq. 3 
RM = RM0 + bK      eq. 4 

 

S

O

C
CH3

O4

S

O

5  
 

Table 4 

Rf values and hydrophobic characteristics (RM0 and b) of compounds 1a–g, 2, 3a–g, 4 and 5.  
RP-TLC results for five ethanol-water mixtures (A–E) a,b 

Rf Hydrophobic                   Statistical 
Characteristics                parameters 

Compound 

A B C D E RM0 b r F  SD 

1a 0.944 0.891 0.861 0.819 0.777 1.948 -0.032 -0.973 54.650 0.069 
1b 0.930 0.891 0.847 0.805 0.763 1.821 -0.030 -0.990 156.727 0.038 
1c 0.916 0.851 0.833 0.791 0.736 1.623 -0.027 -0.970 49.204 0.061 
1d 0.888 0.810 0.777 0.736 0.680 1.653 -0.026 -0.973 53.996 0.056 

Table 4 (continues) 
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Table 4 (continues) 

1e 0.861 0.783 0.75 0.694 0.555 2.255 -0.031 -0.982 81.120 0.056 
1f 0.680 0.638 0.625 0.567 0.527 0.981 -0.013 -0.988 125.798 0.019 
1g 0.944 0.918 0.888 0.847 0.805 1.683 -0.030 -0.997 700.129 0.018 
2 0.722 0.608 0.555 0.430 0.388 2.536 -0.030 -0.987 117.330 0.044 
3a 0.675 0.636 0.5 0.378 0.297 3.137 -0.036 -0.990 148.771 0.047 
3b 0.689 0.666 0.542 0.418 0.337 2.871 -0.034 -0.984 96.652 0.055 
3c 0.689 0.666 0.528 0.418 0.351 2.779 -0.033 -0.984 91.678 0.055 
3d 0.648 0.606 0.385 0.297 0.216 3.895 -0.044 -0.982 85.007 0.075 
3e 0.635 0.575 0.357 0.256 0.189 4.174 -0.046 -0.986 107.087 0.071 
3f 0.714 0.638 0.555 0.416 0.277 3.397 -0.040 -0.990 151.600 0.051 
3g 0.891 0.848 0.728 0.675 0.594 2.756 -0.038 -0.986 104.918 0.059 
4 0.666 0.567 0.513 0.416 0.388 2.119 -0.025 -0.985 104.814 0.038 
5 0.638 0.5 0.430 0.333 0.277 2.884 -0.032 -0.991 168.387 0.039 

a Five determinations on silica gel RP-18F254S (Merck), with percent of ethanol in mixture ethanol-water: A = 95, B = 90,  
C = 85, D =80, E = 75%. 
b RM0, b, r, F, and SD are defined by the preceding text and eqs. 3 and 4. 

 
 

In attempting to calculate log P values using fragmental constants,20 a fair correlation (r =0.846) with 
experimental data for RM0 was obtained for the series 3a–g (Fig. 1).  
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r = 0.846

R
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0

log P  
Fig. 1 – RM0 vs logP for compounds 3a-g. 

The 2-acetylphenoxathiin moiety is relatively hydrophobic, with log P = 1.08, conferring hydrophobicity to 
compounds 3a–g. The experimental results concerning the hydrophobic/hydrophilic character (RM0 values, 
Tab. 4) allowed the following observations: (i) compared with phenols 1a–g, the ethers 3a–g are more 
hydrophobic (due to the acetylphenoxathiin moiety); (ii) the hydrophobicity of compounds 3a–g decreases in 
order RM0 3e> RM0 3d> RM0 3f> RM0 3a> RM0 3b> RM0 3c> RM0 3g depending on the groups present in the 
molecule; (iii) the hydrophobicity depends on the number of methoxy groups (RM0 3a> RM0 3b> RM0 3c, with 
the hydrophilicity increasing obviously in reverse order); (iv) allyl and propenyl moieties increase 
hydrophobicity (RM0 3e> RM0 3d>RM0 3b); (v) the butanone moiety increases hydrophobicity (RM0 3f> RM0 
3a) and (vi) the hydrophobicity of compound 3g is the smallest (the hydrophilicity is highest), due to the 
glycoside moiety. 
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The thin-layer chromatographic behavior of compounds 3a–g 

The TLC behavior was investigated because this characteristic has practical and theoretical importance. 
For this purpose we have chosen pure solvents with different values of the ET(30) (Dimroth-Reichardt`s) 
parameter,28 as well as a mixture chloroform/toluene/methanol which allows the evaluation of compound 3g 
(Tab. 5).  

Table 5 

TLC behavior (Rf) a of compounds 3a–g on silica gel 60 GF254 plates (Merck) with five mobile phases  
(solvents with different ET(30) values)28 

Comp. 1,2-Dichloroethane 
ET(30) = 41.9 

Dichloromethane 
ET(30) = 41.1 

Chloroform 
ET(30) = 39.1 

Toluene  
ET(30) = 33.9 

Chloroform: toluene: 
methanol=6.5:3:0.5 v/v 

3a 
3b 
3c 
3d 
3e 
3f 
3g 

0.933 
0.760 
0.605 
0.802 
0.818 
0.760 
0.040 

0.915 
0.603 
0.377 
0.650 
0.698 
0.509 
0.014 

0.901 
0.524 
0.205 
0.573 
0.590 
0.418 

0 

0.417 
0.095 
0.041 
0.109 
0.109 
0.054 

0 

0.986 
0.959 
0.932 
0.973 
0.979 
0.905 
0.310 

a For five determinations. 
 

The experimental results for compounds 3a–g with pure solvents (Tab. 5) can be interpreted as follows: 
(i) in chlorinated solvents the Rf values depend on the solvent polarity (ET(30) values) and decrease in the 
following order: 1,2-dichloroethane> dichloromethane> chloroform; (ii) the groups present in the molecule 
modify the Rf  values (Rf 3a> Rf 3e≥ Rf 3d> Rf 3b≥ Rf 3f> Rf 3c> Rf 3g) and (iii) the Rf value for compound 3g 
is relatively high (Rf = 0.310) only in the mixed solvent which contains methanol, because of its numerous 
hydroxyl groups. 

Other properties. Qualitative experiments 

The newly synthesized compounds 3a–g have yellow to blue fluorescence (excited at 366 nm) in 
solution and in solid state (TLC detection). The compounds 3a–g with Fe3+ salts are not colored, but the 
phenols 1a–g are colored (TLC detection spraying with ethanolic solution of Fe3+ salts). 

In the presence of concentrated sulfuric acid, compounds 3a–g have blue-purple colors, unlike compounds 2 
(purple), 4 (red), and 5 (blue); this behavior indicates a structural dependence of the electronic absorption 
spectra of the free cation-radicals 6 formed in sulfuric acid,13,14,29,30 depending on the substituent R.  

 

S

O

R

6

. +

 
 

Fluorescent and color characteristics, in presence of sulfuric acid, will be discussed in more detail in a 
separate paper.  

CONCLUSIONS 

New keto-ethers 2-(α-aryloxyacetyl)-phenoxathiin 3a–g were prepared starting from the aroxides 
corresponding to phenolic compounds 1a–g and the halogenated derivative 2, involving a SN2 type mechanism 
mediated by a crown ether in methylene chloride. The cation of the aroxide corresponded to the size of the crown 
ether. The structures of the compounds 3a–g were confirmed by 1H- and 13C-NMR spectra. The hydrophobicity/ 
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hydrophilicity properties were investigated through reverse phase thin-layer chromatography (RP-TLC), and a fair 
correlation with calculated log P values was found. The TLC behavior was also investigated. 

EXPERIMENTAL PART 

Starting compounds for synthesis, 1a–d, 1e (cis-trans), and crown ethers (15C5 and 18C6) were from Merck, Darmstadt. 
Compounds 1f and 5 were Aldrich products. Compound 1g was supplied by the Romanian pharmaceutical company, Sindan. 
Aroxides of the phenols 1a–g were prepared according to literature data.17 Compounds 28,9,31,32 and 433 were obtained as previously 
described. Silica gel plates 60 GF254 (for TLC) and silica gel RP-18 F254S (for RP-TLC) were from Merck, Darmstadt. 

1H-NMR and 13C-NMR spectra were recorded with a Varian Gemini 300 BB spectrometer (300 MHz for 1H-NMR and 75 MHz for 
13C-NMR). 

Synthesis of compounds 3a–g. General procedure. 

The molar ratio of the reactants, aroxides17 corresponding to the phenols 1a-g: 2: CE was 1.5: 1: 1.5 The solid aroxides were 
dissolved under stirring in methylene chloride (50mL for 1g solid aroxides) by addition of crown ether 15C5 (for sodium aroxides of phenols 
1a, 1c, 1g) and 18C6 (for potassium aroxides of phenols 1b, 1d–f). Then the halogen derivative 2 was added and the mixture was stirred at 
room temperature: 24h for 3a and 3c; 72h for 3d and 3e; 96h for 3b, 3f and 3g. The reaction mixture was washed twice with hydrochloric 
acid (1N) and the twice with sodium hydroxide (1N). The organic layer was separated and dried over anhydrous sodium sulfate, and the 
solvent was removed using a rotary evaporator. The crude compound was dissolved in methylene chloride and then was purified by 
preparative TLC on silica gel GF254 plates using as mobile phases: (i) a mixture of methylene chloride/n-hexane 1/1 v/v one time for 3a; (ii) 
methylene chloride one time for 3b, 3d, 3e and three times for 3f; (iii) a mixture of methylene chloride/n-hexane 7/3 v/v one time for 3c and 
(iv) mixture of chloroform/toluene/methanol 6.5/3/0.5 v/v six times for 3g. The extraction (Soxhlet apparatus) of the major fluorescent zone 
from the silica gel strip was performed with a methylene chloride/methanol mixture (9/1 v/v). 

3a, 2-(α-Phenyloxyacetyl)-phenoxathiin, 73.3% yield; yellow solid, m.p. 110-111◦C; Anal.: Calcd.% for C20H14O3S: C 71.84; 
H 4.22; found% C 71.64; H 4.19.  

3b, 2-(α-2-Methoxyphenyloxyacetyl-)phenoxathiin, 58.4% yield; yellow solid, m.p. 103-104◦C; Anal.: Calcd.% for C21H16O4S: 
C 69.21; H 4.43; found% C 69.15; H 4.38.  

3c, 2-(α-2,6-Dimethoxyphenyloxyacetyl)-phenoxathiin, 53.4% yield; white solid, m.p. 140.5-141.5◦C; Anal.: Calcd.% for 
C22H18O5S: C 66.99; H 4.60; found% C 66.90; H 4.56.  

3d, 2-(α-4-Allyl-2-methoxyphenyloxyacetyl)-phenoxathiin, 52.3% yield; dark-yellow semi-solid material; Anal.: Calcd.% for 
C24H20O4S: C 71.27; H 4.98; found% C 71.20; H 4.91. 

3e, 2-(α-2-Methoxy-4-(E+Z)-propenylphenyloxyacetyl)-phenoxathiin, 84.4% yield; yellow solid, m.p. 95.5-96.5◦C; Anal.: 
Calcd.% for C24H20O4S: C 71.27; H 4.98; found% C 71.18; H 4.88.  

3f, 2-(α-4-(3-oxobutyl)-phenyloxyacetyl)-phenoxathiin, 79.1% yield; white solid, m.p. 113.5-114.5◦C; Anal.: Calcd.% for 
C24H20O4S: C 71.27; H 4.98; found% C 71.20; H 4.93 

3g Etoposide-yl 2-(α-acetylphenoxathiin) ether, 21.8% yield; white solid, m.p. 150-154◦C; Anal.: Calcd.% for C43H40O15S: C 62.31; 
H 4.86; found% C 62.26; H 4.79.  
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