ELECTROCHEMICAL CHARACTERIZATION OF PASSIVE FILMS ON PURE ALUMINIUM ELECTRODES IN DIFFERENT EXPERIMENTAL CONDITIONS

Viorel BRÂNZOI, a* Florentina GOLGOVICI and Florina BRÂNZOI b

^aDepartment of Physical Chemistry and Electrochemistry, "Politehnica" University of Bucharest, Calea Grivitei 132, Bucharest, Roumania, E-mail: iv_branzoi@chim.upb.ro

^bInstitute of Physical Chemistry Bucharest, Splaiul Independentei 202, Bucharest, Roumania, E-mail: fbrinzoi@chimfiz.icf.ro

Received June 2, 2006

The polarization behaviour of pure aluminium was studied by potentiostatic, potentiodynamic and potential decay techniques in $KClO_3$ aqueous solutions, with and without different aggressive anions. In aqueous solution of $KClO_3$ without aggressive anions, the potential sweep from the cathodic to the anodic range led to the formation of an insoluble layer of aluminium oxide on the electrode surface, which passivates the working electrode.

The presence of aggressive anions like as Cl⁻, SCN⁻, prevents the formation of the passive film and accelerates the process of anodic dissolution, the more the greater is the concentration of the aggressive anion. Localized pitting is best described by a characteristic parameter called the pitting potential value (E_{π}) . E_p is the protection potential and the pitting can be formed only in the E_{π} - E_p polarization range. Electrochemical behaviour of anodised aluminium surface was also studied by (EIS) in KClO₃ solution. Samples were observed by scanning electron microscopy (SEM).

INTRODUCTION

Aluminium, as indicated by its position in the electromotive force series is a thermodynamically reactive metal, among structural metals, only beryllium and magnesium are more reactive. It is a metal with high electronegative standard potential (-1.67 V) and in spite of this, it is highly resistant to most acidic and neutral solutions due to the formation of a protective oxide film on its surface. In oxidizing environments the film formation is very rapid and an attack on the metal is negligible. Hence, aluminium electrodes are easily oxidized to form Al^{3+} species, giving a non-conducting dielectric Al_2O_3 film acts as an excellent barrier inhibiting an electron transfer and hence, the corrosion process. However, the presence of aggressive anions like chloride creates extensive localized attak. Various mechanism have been proposed to explain the breakdown of the passive film.¹

In the present paper we studied the polarization behaviour of aluminium in different aqueous solutions, particularly regarding either the role played by the oxide layer or pitting corrosion due to the presence of different aggressive anions.

EXPERIMENTAL

The polarization behaviour of pure aluminium was studied by potentiodynamic method using different sweep rates. The working electrode potential was always measured with the reference to the saturated calomel electrode. In order to reduce ohmic resistance, we used a single compartment cell in which the working electrode was situated in the cell center and surrounded by the auxiliary electrode, made of a bright platinum gaze. Prior to each determination, the working electrode was mechanically ground and polished with emery paper of varied granulation up to mirror-luster, degreased in benzene at boiling temperature for 5 min. in order to remove all traces of fat and abrasive power remaining on the surface after polishing.

The determination were repeated with each solution until a good reproducibility of the results was obtained. All experiments were performed at 25°C. The structural analysis has been performed by EIS and by SEM.

^{*} Corresponding author

RESULT AND DISCUSSION

For the determination of different characteristic electrochemical parameters, the complete polarization curves were registered. In the case of solid reaction partners taking part in electrochemical reaction reproducible polarization curves cannot be easily taken, due to the formation or dissolution of solid layers on the electrode. In aqueous solutions of 0.3 M KClO₃ typical current-potential curves can be recorded on aluminium (aluminium oxide) working electrode (Fig.1).

After starting the potential sweep from the cathodic range, the formation of an insoluble layer of aluminium oxide (Al_2O_3) on the electrode surface takes place. Analysis of Fig.1 shows that at the E_π potential, the current starts to increase and altering polarization direction, hysteresis can be observed, the current will decrease to zero only at more negative potential (E_p) than E_π . We consider that, E_π is the critical pitting potential and E_p is the protection potential (or repassivation potential). Pitting can be formed only in the $\Delta E_{p-\pi}$ polarization range as it was proved in many experiments. The corrosion behaviour of aluminium can be qualified by these two potential values and by through the ranges of passivation and repassivation.

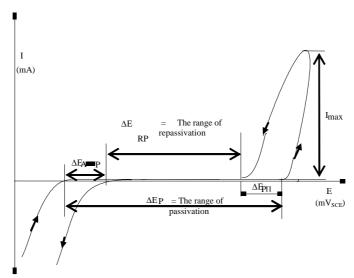


Fig. 1 – The hysteresis curve of pure Al in aqueous solution of KClO₃ 0.3 M at 4 mVs⁻¹ sweep rate

The increase of the $KClO_3$ concentration led in all the cases to the increase of the repassivation and passivation ranges, to the decrease of the current peak and to the increase of the $\Delta E_{p-\pi}$ range. We can explain this behavoir taking into account that, the $KClO_3$ has an oxidant caracter and hence, the solutions of $KClO_3$ more concentrated have a stronger oxidant character. This special propertie determines an increase of the thickness passive film, an increase of the stability and the adherence passive film. The results presented in Table 1 are in concordance with these characteristics.

Further, we studied the influence of the potential sweep rate on the passive characteristics. From Table 1, one can see that at the same cocentration of $KClO_3$, the increase of the potential sweep rate led in all the cases to the decrease of the passive (ΔE_P), repassive (ΔE_{RP}) and $\Delta E_{p-\pi}$ ranges. In the same time, the increase of the potential sweep rate leads to the increase of the current peak and of the passive current as we can see from Table 1.

In Fig. 2 the hysteresis curves of aluminium in $0.3~M~KClO_3$ with different aggressive additives are presented. One can see that, the addition of the aggressive anions leads, in all the cases to a decrease of the repassivation and passivation ranges, to an increase of the peak currents and to a decrease of the range $\Delta E_{p-\pi}$ (see Fig. 2 and Tab. 2, 3). The different effects of the addition of the different aggressive anions (see Fig. 2 and Tab. 2, 3) are the consequence of different bonding strength of these anions on different sites of the surface. We suppose that aggresive anions are bonded chemically in the interface as an initial step of the formation of different oxo-, hydroxo- and aniono-complexes to the following:

$$Al\left[O_{x}(OH)_{y}\left(H_{2}O\right)_{z}\right] + A^{-} \rightarrow Al\left[O_{x}(OH)_{y-1}A\left(H_{2}O\right)_{z}\right] + HO^{-}$$

$$\tag{1}$$

$$(AlOOH)_4 H_2 O + A^- \rightarrow (AlOOH)_3 AlOAH_2 O + HO^-$$
 (2)

$$AIOOH + A^{-} \rightarrow AIOA + HO^{-}$$
 (3)

$$Al(OH)_3 + A^{-} \rightarrow Al(OH)_2A + HO^{-}$$
(4)

In the case of Cl^- ion it is possible to obtain the $[AlCl_6]^{3-}$ complex, finally. In presence of different aggressive anions, the quantitative interpretation of this multistep heterogeneous reaction mechanism is complicated. Therefore, a large variety of reactions is possible. We can say, that aluminium pitting corrosion is an electrochemical process, followed by two heterogeneous chemical processes and aggressive anion is a chemical reaction partner.²⁻⁸

Table 1 Kinetic parameters of passivation and repassivation for Al in aqueous solution of 0.3 M KClO_3 at 25°C

Concentratio	sweep	E_{π}	E_p	$\Delta E_{p\text{-}\pi}$	ΔE_{P}	ΔE_{RP}	I_{max}
n	rate mvs ⁻¹	mV	mV	mV	mV	mV	mA
0.1	mvs 1	-295	-545	250	924	659	24.9
0.1	2	-302	-543 -547	245	924	653	29.39
	4	-302	-547 -549	243	895	633 649	
		-314	-552	238	893 888	634	35.78 41.3
	6 8	-314		238		632	
	8 10	-332 -361	-566	234 227	869		44.62
			-588 505		850	616	46.15
0.2	12	-398	-595 -520	197	837	605	49.66
0.2	1	-283	-520 520	237	963	685	15.31
	2	-296	-528 522	232	947	672	24.16
	4	-301	-532	231	914	666	28.4
	6	-309	-535	226	902	663	32.9
	8	-325	-546	221	889	647	37.23
	10	-342	-560	218	873	633	39.87
	12	-390	-572	182	845	619	43.28
0.3	1	-265	-486	221	992	704	8.44
	2	-274	-488	214	990	700	20.33
	4	-283	-491	208	974	692	24.84
	6	-304	-495	191	957	686	27.16
	8	-318	-501	183	944	680	32.85
	10	-324	-503	179	925	675	36.86
	12	-387	-512	125	909	662	41.13
0.4	1	-248	-452	204	1089	757	6.32
	2	-265	-458	193	1005	746	11.92
	4	-274	-463	189	993	739	18.3
	6	-285	-465	180	976	735	22.5
	8	-312	-477	165	962	712	25.91
	10	-318	-478	160	944	700	28.4
	12	-348	500	152	927	687	33.92
	1	-236	-424	188	1125	803	4.16
	2	-243	-427	184	1063	792	8.36
	4	-250	-429	179	1024	789	14.89
	6	-255	-430	175	1003	784	18.13
	8	-293	-453	160	985	769	22.4
	10	-307	-460	153	961	745	26.3
	12	-325	-473	148	939	723	29.65

The changing of E_{π} potentials with aggressive ion concentration is due to migration effect, because a competitive adsorption takes place between ClO_3 , and A^- ions. On an aluminium electrode covered by a passive layer, electrochemical reduction of measurable rate can be detected only quite low overpotentials (Fig. 2 and Tables 2, 3).

Further, we studied the influence of S^{2-} additions on the polarization behaviour of pure aluminium in aqueous solutions of KClO₃. In Table 4 and 5 are presented the kinetic corrosion parameters of pure aluminium in 0.3M KClO₃ with different amounts of S^{2-} ions.

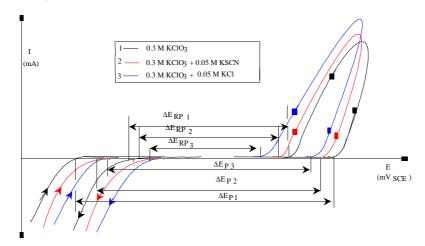


Fig. 2 – The hysteresis curves of pure Al in $0.3~M~KClO_3$ solution with and without different additives at $25^{0}C~$ and the sweep rate of $4~mVs^{-1}$

Table 2 Kinetic parameters of passivation and repassivation for Al in aqueous solutions of 0.3 M KClO₃ + X M [A $^{-}$] at 1 mVs $^{-1}$ sweep rates and 25 0 C

Anion	C _A -	E_{π}	E_p	$\Delta E_{p-\pi}$	ΔE_{p}	$\Delta \mathrm{E}_{\mathrm{RP}}$	I_{max}
	(M)	mV	mŴ	mV	mV	mV	MA
Cl	0	-265	-486	221	992	704	8.44
	5*10 ⁻³	-273	-504	231	934	648	19.82
	10-2	-316	-553	237	869	600	25.75
	2.5*10 ⁻²	-387	-626	239	732	475	51.7
	5*10 ⁻²	-438	-681	243	645	396	68.31
	7.5*10 ⁻²	-464	-709	245	597	344	83.74
SCN ⁻	0	-265	-486	221	992	704	8.44
	5*10 ⁻³	-268	-493	225	967	678	12.3
	10 ⁻²	-295	-523	228	911	623	19.7
	2.5*10 ⁻²	-322	-552	230	885	600	31.65
	5*10 ⁻²	-364	-598	234	772	506	51.7
	7.5*10 ⁻²	-398	-640	242	683	438	60.4

Table 3 Kinetic parameters of passivation and repassivation for Al in aqueous solutions of 0.3 M KClO₃ + X M [A⁻] at 6 mVs⁻¹ sweep rates and 25° C

Anion	C _A -	E_{π}	E_p	$\Delta E_{p-\pi}$	ΔE_{p}	ΔE_{RP}	I_{max}
	(M)	mV	mV	mV	mV^{r}	mV	MA
Cl ⁻	0	-304	-495	191	957	686	27.16
	5*10 ⁻³	-349	-548	199	915	639	32.62
	10 ⁻²	-374	-577	203	834	585	49.53
	2.5*10 ⁻²	-425	-631	206	708	461	63.9
	5*10 ⁻²	-483	-693	210	622	373	75.41
	7.5*10 ⁻²	-512	-725	213	583	334	96.2
SCN ⁻	0	-304	-495	191	957	686	27.16
	5*10 ⁻³	-318	-514	196	932	662	29.9
	10 ⁻²	-338	-538	200	901	609	35.15
	2.5*10 ⁻²	-375	-577	202	854	588	41.2
	5*10 ⁻²	-402	-607	205	803	549	55.73
	7.5*10 ⁻²	-448	-655	207	785	525	68.8

Analysis of these tables points out the fact that, once with the addition of the S^{2^-} ions the passive process becomes more stronger and now, takes place an increase of the passivation and repassivation ranges, a decrease of the current peak and also, an increase of the $\Delta E_{p-\pi}$ range while the values of the E_{π} and E_{p} become more electropositive. We can explain this behaviour due to the fact that, the S^{2^-} anions interactionate with the Al_2O_3 passive oxide film and form stable complexes on the electrode surface. In this way, the passive film from the electrode surface becomes much more stable, adherent and compact. The increase of the potential sweep rate has the same effect like as the other aggresive anions (see Tables 4 and 5).

Table 4 Kinetic parameters of passivation and repassivation for Al in aqueous solutions of 0.3 M KClO₃ + X M S²⁻ at 1 mVs⁻¹ sweep rates and 25° C

Anion	C _A -	E_{π}	Ep	$\Delta E_{p-\pi}$	ΔE_{p}	ΔE_{RP}	I_{max}
	(M)	mV	mV	mV	mV	mV	MA
S ²⁻	0	-265	-486	221	992	704	8.44
	5*10 ⁻³	-193	-449	256	1007	1	27.41
	10-2	-122	-415	293	1068	755	22.57
	2.510 ⁻² 5*10 ⁻²	-89	-393	304	1083	776	21.
	5*10 ⁻²	-24	-379	365	1150	780	20.41
	$7.5*10^{-2}$	+146	-304	450	1258	800	18.63

Table 5 Kinetic parameters of passivation and repassivation for Al in aqueous solutions of 0.3 M KClO $_3$ + X M S 2 - at 6 mVs $^{-1}$ sweep rates and 25 0 C

Anion	C _A -	E_{π}	E _p	$\Delta E_{p-\pi}$	ΔE_{p}	ΔE_{RP}	I_{max}
	(M)	mV	mV	mV	mŶ	mV	MA
S^{2-}	0	-304	-495	191	957	686	27.16
	5*10 ⁻³	-245	-469	224	982	690	27.69
	10-2	-166	-423	257	995	718	28.1
	2.5*10 ⁻²	-103	-407	304	1028	720	28.32
	5*10 ⁻²	-45	-391	346	1098	737	28.55
	7.5*10 ⁻²	+102	-326	428	1187	748	28.74

The formation of the aluminium oxide film, in aqueous solutions of KClO₃ was pointed out by SEM. The aluminium samples were immersed in 0.5M KClO₃ for different immerse times and then were examinated by SEM. Analysis of the obtained micrographies after the immersion time of one hour (1h) pointed out that, the aluminium oxide film formed is mainly the adherent structure (see Fig.3) on the aluminium surface.

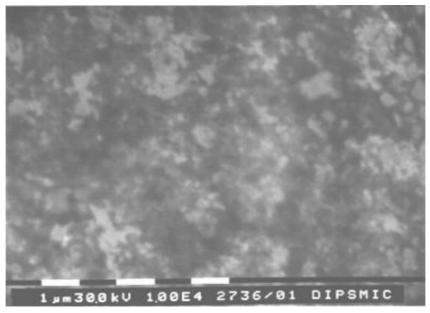


Fig. 3 – SEM for aluminium in 0.5 M KClO₃ solutions after immersion time of 1 h

After the immersion time of 4 h (four hours) the structural analysis has been shown that, the oxide layer is formed very well (see Fig.4). At the inner side the oxide layer is dense, compact and adherent while at the outer side the oxide layer is much more porous and it is formed from particles much more large and much more soluble. The inner side of the oxide layer is formed from α Al₂O₃, while the outer side is formed from β Al₂O₃.

The Nyquist diagrams obtained for the system: Al/0.5M KClO₃ confirms the obtained data by SEM measurements. Once with the increase of the immersion time takes place an increase of the polarization resistance and hence, leads to the decrease of the corrosion rate of the aluminium electrode. This decrease of the corrosion rate is due to the formation of an oxide film with an increasing thickness which protects aluminium electrode.

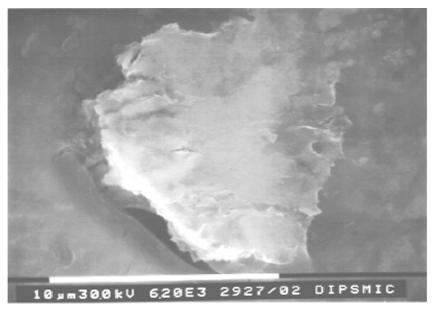
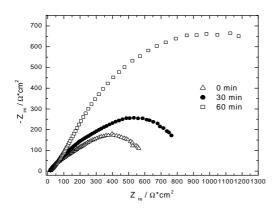
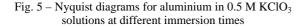




Fig. 4 - SEM for aluminium in 0.5 M KClO₃ solutions, after immersion time of 4 h

Bode diagrams from Fig. 6 also confirms the obtained data by SEM measurements. The appearance of two time constants points out the formation of two interfaces, in our case an interface between surface aluminium and the α form of Al_2O_3 ($Al / \alpha Al_2O_3$) and the second interface between the β Al_2O_3 and electrolyte solution (β $Al_2O_3 / 0.5M$ KClO₃).

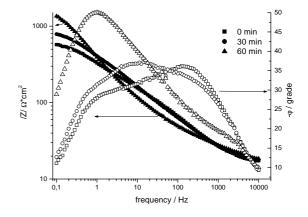


Fig. 6 – Bode diagrams for aluminium / 0.5 M KClO₃ system, at different immersion times

CONCLUSIONS

The breakdown of the passive film takes place by migration of the chloride ions through the oxide film up to the metal-film interface;

The increase of the KClO₃ concentration led in all the cases to the increse of the ΔE_p , ΔE_{RP} and $\Delta E_{p-\pi}$ and to movement of the E_{π} and E_p towards more electropositive values;

The addition of the aggressive anions leads in all the cases to accelerate of the corrosion process;

After a certain immersion time in 0.5M KClO₃ two species of aluminium oxide (α Al₂O₃ and β Al₂O₃) are formed;

Occurred measurement by EIS and SEM pointed out the formation of the α and β forms of Al₂O₃;

Aluminium pitting corrosion is an electrochemical process, followed by to heterogeneous chemical processes and aggressive is a chemical reaction partener.

REFERENCES

- 1. S. Berrada, M. Elboujdaini and E. Ghali, J. Appl. Electrochem., 1992, 22, 1065.
- 2. S. Szklarska-Smialowska, "Pitting Corrosion of Metals", NACE, Houston, Texas, 1986, p.296.
- 3. L. Garrignes, P. Pebere and F. Dabosi, *Electrochim. Acta*, **1996**, *41*, 1209.
- 4. R. Ambat, E.S. Dwarakadasa, J. Appl. Electrochem., 1994, 24, 911.
- 5. J. Gruberger and E. Gileadi, Electrochim. Acta, 1986, 31, 153.
- 6. P.I. Cabot, J.A.Garrido, E. Perez, J. Virgili, Corros. Sci., 1986, 26, 357.
- 7. T. Okada, Electrochim. Acta, 1988, 33, 389.
- 8. W. Kautek, Corros. Sci., 1988, 28, 173.
- 9. F.J. Martin, G.T. Cheek, W.E. O'Grady and P.M. Natishan, Corrosion Science, 2005, 47, 3187
- 10. M. Pilaski and M. M. Lohrengel, Electrochim. Acta, 2003, 48 1309.
- 11. E. McCafferty, Corros. Sci, 2003, 45, 301.
- 12. E. Akiyama, H. Habazaki, A. Kawashima, K. Asami and K. Hashimoto, Materials Science and Engineering A, 1997, 226-228, 920.
- 13. L. Garringes, P. Pebere and F. Dabosi, Electrochim. Acta, 1996, 41, 1209.
- 14. Y. S. Zhang and X. M. Zhu, Corros. Sci., 1999, 41, 1817.