DISSOCIATION ENERGIES IN WATER SOLUTION FOR SALINE BONDS IMPLIED IN INTERACTIONS MEDIATED BY PEPTIDOGLICANS. AB INITIO – PCM COMPUTATIONS

Simona MUNTEAN,^{a*} Ludovic KURUNCZI,^b Valentin CAREJA^a and Zeno SIMON^a

^a Institute of Chemistry Timisoara of Romanian Academy, B-dul Mihai Viteazul 24, 300223 Timisoara, Roumania ^b University of Medicine and Pharmacy "Victor Babes", Faculty of Pharmacy Piata E. Murgu 2-4, 300034 Timisoara, Roumania

Received June 25, 2007

Dissociation energies in water solution are computed for saline bonds mediated by Ca^{2+} and Mg^{2+} , and by acetate, methylsulphate, etandiol, as models for Lewis bases groups on peptidoglicans. The structures, energies, and geometries of the L_2M – type complexes, in which L = ligands and M = cations are computed for vacuum and water solutions using the *ab initio* method and 6-31G^{*} basis set, and the PCM version for solvent interactions. Two sets of ionic radii are used for Ca^{2+} and Mg^{2+} cations for hydration energy computations. Hydration energy results are compared with experimental figures for the L – ligands, M-cations, and for a series of other molecules and ions. Computed dissociation energies for the L_2M complexes indicate Mg^{2+} - based saline bonds less stable than Ca^{2+} - based bonds.

INTRODUCTION

Intercellular interactions mediated by peptidoglycans imply saline bonds between two Lewis bases (-COO, -OSO3, -OH, etheric -Ogroups) and Ca²⁺ ions, which cannot be substituted by Mg²⁺ ions.¹ Stabilities of saline bonds implied in interactions mediated by peptidoglicans,² are simulated using computed dissociation energies for ML₂ complexes (M: Ca²⁺, Mg²⁺; L: CH₃COO⁻, CH₃OSO₃, 1,2-ethanediol), in water solution. These are considered as models for the Lewis base groups from peptidoglicans. In a previous publication hydration energies of ML₂ in aqueous solutions were computed by a variety of mainly semiempirical methods.³ Here we compute these dissociation energies by the PCM method,^{4,5} employing 6-31G^{*} ab initio computations. Hydration energies for the L - ligands, and other simple organic molecules and ions are also computed and compared with experimental results, in order to assess the reliability of our methods, and to select the best set of parameters (ionic radii, etc.) for the dissociation energy calculations.

METHODS

Optimized geometries and the corresponding energies of the L_2M – type complexes, L – ligands and M - cations, as well as of other molecules employed as a test were calculated in vacuum and in water solution, using the *ab initio* method and PCM (Polarizable Continuum Model) for water solution, for 6-31G* basis set (as implemented in Gamess 7.0 package).⁶ For the ionic species, hydration free energies, ΔG_h , were calculated with two sets of ionic radii, and compared with experimental values ⁷⁻⁹. Finally, dissociation free energies, ΔG_d , were calculated as differences between energies, ΔG values, in water solution (for M^{2+} + 2L minus for ML₂). Vibrational analysis (298°C) for the vacuum structures was performed within the *ab initio* computations and the zero point energy (ZPE) corrections are included in the computed ΔG_d values. The same ZPE values were considered in vacuum and in water solution.

RESULTS AND DISCUSSION

Ab initio $6-31G^*$ hydration energies ($\Delta G_{h,calc}$) were calculated as differences between the total

^{*} Corresponding author: sgmuntean@acad-icht.tm.edu.ro

free energy in water solution, and the total energy in vacuum, for a set of N = 21 molecules and ions. For the neutral or polyatomic ionic species the default Gamess radii were employed. The results are presented in Table 1. For the atomic ions the two sets of ionic radii tested are those of Wells¹⁰ and Sutton.¹¹ Table 2 lists the values obtained for these two types of radii.

тт	1	1	(1 1/ 1)		1		1 .		
Hx	idration energy	values	kcal/mol	tor neutral	and	10010	nolvat	omic	snecies
11	y un autom enter gy	values	Kcal/mor	101 neutral	anu	ionic	poryai	June 1	species

Compound	Total free energy vacuum	ZPE correction	Total free energy in water solution	$\Delta G_{h,calc}$	$\Delta G_{h,exp}$
MeOH	-72151.10	34.72	-72150.97	+0.13	-5.10
EtOH	-96630.02	53.98	-96627.55	+2.47	-5.01
n-PrOH	-121105.51	73.18	-121100.94	+4.57	-4.80
<i>i</i> -PrOH	-121108.99	72.78	-121104.15	+4.84	-4.74
EtGl	-143535.60	57.70	-143593.77	-58.19	-
Ac	-142553.18	32.72	-142620.73	-67.55	-79.9
CH ₃ OSO ₃ ⁻	-462155.84	38.00	-462217.18	-137.35	-
D (baie)	-191817.32	83.11	-191815.35	+1.97	-
D (chair)	-191823.85	83.31	-191821.30	+2.55	-

Total free energy in vacuum contains zero point energy (ZPE) correction. MeOH – methanol; EtOH – ethanol; *n*-PrOH, *i*-PrOH – normal and isopropanol; EtGl – 1,2 etandiol; D – 1,4-dioxan; $\Delta G_{h,exp}$ – calculated and experimental hydration free enthalpies.

Table 2

Hydration energy values	(kcal/mol) for atomic	c ions and ML_2 complexes
-------------------------	-----------------------	-----------------------------

	5 05 (,	2	1	
Compound	Total free energy	ZPE	Hydration f	ΔG_{hexp}	
	vacuum	correction	Wells	Sutton	
		-	$\Delta G_{h,calc}$	$\Delta G_{h,calc}$	-
Ca ²⁺	-424261.72	-	-552.48	-481.87	-381.2
Mg^{2+}	-124756.46	-	-761.50	-634.83	-455.5
Cl	-288356.95	-	-69.38	-73.94	-77.0
K^+	-375860.59	-	-100.64	-90.5	-81.0
Na ⁺	-101442.75	-	-132.56	-116.05	-98.0
Ac ₂ Ca	-709872.54	68.86	+1.66	-74.81	-
Ac ₂ Mg	-410469.94	69.76	-5.91	-6.11	-
(EtGl) ₂ Ca	-711679.57	118.1	-303.22	-210.72	-
(EtGl) ₂ Mg	-412212.44	119.86	-169.51	-169.77	-
(CH ₃ OSO ₃) ₂ Ca	-1349020.92	78.48	-109.5	-84.83	-
(CH ₃ OSO ₃) ₂ Mg	-1049606.02	79.20	-12.52	-12.72	-
D ₂ Mg	-508619.51	169.76	-149.85	-150.09	-

Ac – acetate; for other significances – see legend Tab. 1; Wells ¹⁰ results calculated with $r_{Ca2+} = 1.00$ Å, $r_{Mg2+} = 0.72$ Å; Sutton¹¹ results calculated with $r_{Ca2+} = 1.14$ Å, with $r_{Mg2+} = 0.86$ Å. Hydration free energy values are calculated as differences between total free energies (ZPE corrections included) in water solution (values not indicated in Tab. 2) and respectively vacuum.

The values of ΔG_h calc and ΔG_h exp (the experimental hydration energies from the literature)⁷⁻⁹ from Table 1, demonstrate the fact that small values are hardly modeled by the differences between large calculated numbers (energies). Nevertheless, the general trend of the experimental values is in an acceptable manner reproduced. Comparing the experimental and calculated ΔG_h values presented in Table 2, one can conclude that the Sutton type radii perform better than the Wells values.

Dissociation free energies (ΔG_d) of six L₂M complexes (corresponding to eq. 1), calculated also with the two sets of ionic radii by PCM, are given

in Table 3.

$ML_2 \rightarrow 2 L + M^{2+} \tag{1}$

The values from Table 3 show that the ZPE corrections do not change essentially the conclusions from reference:³ Ca²⁺ ions are required for cell adhesion mediated by peptidoglycans, and they cannot be substituted by Mg²⁺ ions. The ZPE corrected ΔG_d dissociation free energies demonstrate that the Mg²⁺ complexes are more instable than the Ca²⁺ complexes. This conclusion is in discordance with the Irving-Williams series order of stability of the complexes.

<i>iuble s</i>

Dissociation free energies (ΔG_d) for saline bonds (kcal/mol)

Dissociation process	ΔG_d - Wells	ΔG_d - Sutton	ZPE correction
$Ac_2Ca \rightarrow 2Ac^- + Ca^{2+}$	-84.99	-37.70	- 3.30
$Ac_2Mg \rightarrow 2 Ac^- + Mg^{2+}$	-283.57	-156.70	- 4.30
$(CH_3OSO_3)_2Ca \rightarrow 2 CH_3OSO_3^- + Ca^{2+}$	-118.14	-72.30	- 2.50
$(CH_3OSO_3)_2Mg \rightarrow 2 CH_3OSO_3^- + Mg^{2+}$	-333.78	-206.91	3.20
$(EtGl)_2Ca \rightarrow 2 EtGl + Ca^{2+}$	-18.14	-40.03	- 2.70
$(EtGl)_2Mg \rightarrow 2 EtGl + Mg^{2+}$	-323.55	-196.62	- 4.40
$D_2Mg \rightarrow 2 D + Mg^{2+}$	-379.3	-252.39	- 3.54

 ΔG_d – calculated as differences of total free energies in water solution listed in Table 1 and Table 2; ΔG_d – values contain ZPE corrections. For other significances, see legend of Table 1 and Table 2.

In an attempt to explain the above facts, the data from Table 4 are presented, with (Mulliken and Löwdin) charges on the M^{2+} cations, calculated by our *ab initio* methods. As can be seen, systematically greater positive charges on the Ca

atoms from the complexes result than for those carried by the Mg atoms, although the charges on the coordinated oxygen atoms (not presented here) do not differ dramatically.

	Atom	ic charges for the	ca and Mg I	ons from ML_2 co	mpiexes	
		Mulliken			Löwdin	
L	vacuum PCM		vacuum PCM		CM	
	-	Wells	Sutton		Wells	Sutton
			С	a ²⁺		
Ac	1.4282	1.6495	1.6242	1.0853	1.2399	1.2216
EtGl	1.6288	1.9038	1.8937	1.1488	1.7996	1.7898
MeSO ₄	1.4588	1.6777	1.6534	1.1045	1.2638	1.2462
			Μ	[g ²⁺		
Ac	1.0603	1.1565	1.1565	0.3666	0.4173	0.4173
EtGl	1.4612	1.5340	1.5340	0.3805	0.4309	0.4309
MeSO ₄	1.0426	1.1612	1.1613	0.3080	0.3820	0.3820

 Table 4

 Atomic charges for the Ca^{2+} and Mg^{2+} ions from ML_2 complexes

If the stability is largely determined by electrostatic effects, then the Mg compounds will decompose more easily. An explanation for the smaller charges on the Mg atom can be found in reference,¹² a great capacity for a significant charge transfer from the ligands for this atom. Probably Ca presents a weaker tendency for this charge transfer.

As to experimental values for such dissociation ΔG_d 's, Hermais et al.¹³ indicate 6.5 and 8.5 kcal/mol from dissociation - binding studies oligomeric carbohydrates between coating monolayer in neutral water solutions containing 150 mM NaCl and 10 mM CaCl₂. This binding process is highly cooperational and homotypic, but 5 -10 kcal/mol binding strength is suggested also by common knowledge on intermolecular forces.¹⁴ Our abinitio computations for dissociation energies (as a small difference between large numbers) certainly do not have the required 1 kcal/mol precision (at total energies in the range $10^5 - 10^6$ kcal/mol); nevertheless they may correctly indicate relative stabilities between different saline bonds.

CONCLUSIONS

The present work confirms our earlier conclusions that the intercellular interactions mediated by peptidoglycans imply saline bonds mediated by Ca^{2+} ions, and not by Mg^{2+} .

Acknowledgements: This work was supported through a CNCSIS grant type A "Consortiu", 27687/ 2005 by Roumanian Ministry of Education and Research of Roumania.

REFERENCES

- 1. O. Popescu, I. Checiu, P. Gherghel, Z. Simon and G.M. Misevics, *Biochemie*, **2003**, *85*, 181-188
- U. Dammer, O. Popescu, P. Wagner, D. Anselmetti, H.J. Guntherodt and G.N. Misevics, *Science*, 1995, 267, 1173-1175.
- S. Muntean, L. Kurunczi, C. Bologa, G. Ilia and Z. Simon, *Macromol. Symp.* 2006, 235, 215–219
- S. Miertus, E. Scrocco and J. Tomasi, J. Chem. Phys., 1981, 55, 117-129.
- 5. J. Tomasi and M. Persico, *Chem. Revs.*, **1994**, *94*, 2027-2094.

- 6. A.A. Granovsky, PC GAMESS version 7.0, <u>http://classic.chem.msu.su/ gran/ gamess/</u> index.html.
- W.L. Jorgensen, J.P. Ulmschneider and J. Tirado-Rives, J. Phys. Chem. B, 2004, 108, 16264-16270.
- J. Florian and A. Warshel, J. Phys. Chem. B, 1999, 103, 10282-10288.
- O.A. Raevsky and K.J. Schaper, *QSAR Comb. Sci.*, 2003, 22, 926-942.
- 10. A.F. Wells, "Structural Inorganic Chemistry", 5th Edition, Clarendon Press, Oxford, 1984.
- L. Sutton, "Tables of interatomic Distances and Configuration in Molecules and Ions", Spec. Publ. No. 11 and 18, The Chemical society, London, 1965.
- 12. S. Kluge and J. Weston, *Biochemistry*, **2005**, *44*, 4877-4880.
- 13. M.J. Hernais, J.M. de la Fuente, A.G. Barrientos and S. Penades, *Angew. Chem. Int. Edu.*, **2002**, *41*, 1554-1557.
- A. Chiriac, M. Mracec, T.I. Oprea, L. Kurunczi and Z. Simon, "Quantum Biochemistry and Specific Interaction", MIRTON, Timişoara, 2003, Chap. 3.