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In order to discover new n-type or p-type transparent conductors numerous investigations have been carried out recently on transparent 
conducting oxides materials. Our work presents a new In5.5+xSb1.5-3xW2xO12 solid solutions prepared by solid-state reactions. Many expensive 
experiments for optical diffuse reflectance and electrical resistivity were realised to characterise this solid solution. To reduce the time and 
costs of future researches in order to improve or to obtain new transparent conducting oxides, predictions of new properties based on 
experimental measurements are important factors. To achieve this goal the paper implements ideas of artificial intelligence based on support 
vector machine in a minimax approach. The implemented procedure, named minimax decision procedure involving a link between artificial 
intelligence and material science, is able to predict particular variables, properties or trends. In a comparative manner, the paper presents the 
performance of the procedure with some established regression techniques. 

 
 

INTRODUCTION∗ 

Due to significant advances in the field of 
electronic and optical properties of materials, and 
recently in the discovery of novel functionalities in 
display technologies, transparent conducting 
oxides (TCOs) have become an important topic in 
view of future applications. Although scientific 
investigations have produced basic knowledge of 
the underlying phenomena many problems still 
remain unsolved, where quantitative deterministic 
characterization or theoretical approaches are 
dismally lacking or are cumbersome. In the last 
years transparent conducting oxides have become 
an important topic in the field of optoelectronics 
and numerous investigations have been carried out 
recently on these materials, in order to discover 
new n-type or p-type transparent conductors. 
Besides the famous ITO indium-rich oxide, which 
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crystallizes with the bixbyite structure, another 
oxide was identified for the composition In4Sn3O12 
with M7O12 type structure. Introduction of 
antimony in the M7O12 structure and the existence 
of a positive effect on the electrical conductivity 
have been previously demonstrated. Sb5+ can be 
introduced without difficulty into M7O12 structure 
of In4Sn3O12 until the formation of the antimonate 
In5.5Sb1.5O12 .

1 We know that the stability of M7O12 
structure of In4+xSn3-2xSbxO12 solid solution is 
strongly affected as the antimony content 
increases, leading in fact to its transformation into 
a bixbyite type structure. The electrical conductiv-
ity appears to benefit from the introduction of Sb5+. 
Taking into account the existence of tungstate 
In6WO12 previously reported 2-4 which shows the 
significant stabilizing effect due to the introduction 
of W6+ in a M7O12 structure, we are interested in 
the problem of formation a solid solution 
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between In5.5Sb1.5O12 and In6WO12, implementing 
the fully compensated cationic substitution: 3Sb5+ 
→ In3+ + 2W6+. Mathematical or empirical models 
of fundamental phenomena are crosscutting area 
that promises major contribution to improve the 
quality of products or to develop new insights. 
Although scientific achievements on materials 
have supplied basic knowledge of the underlying 
phenomena, there remain many problems where 
theoretical treatments are cumbersome or dismally 
lacking. At the same time laboratory experiments 
and measurements to verify or to establish 
properties of solid solution are cumbersome, 
expansive and time consuming. Recent 
developments in the field of artificial intelligence 
can improve the investigations in this domain. 
Artificial intelligence procedures are capable of 
replicating a lot of variety of non-linear 
relationships of considerable complexity between 
the studied variables and have the ability to 
investigate new phenomenon cases where the 
information cannot be easily accessed theoretically 
or explicitly relational physics. Also these 
procedures can be used to examine the effect of 
any individual input on the output parameter, 
whereas this may be cumbersome and difficult or 
expensive to do experimentally. In the last years 
artificial intelligence techniques have been used to 
solve various problems from material science 
domain.5-8 In order to reduce the number of 
laboratory experiments or to avoid cumbersome 
theoretically developments the present work 
implements a novel procedure based on artificial 
intelligence. The main advantage of the procedure 
is that if once an efficient predictive model is built 
then it can be successfully used to predict on any 
novel compounds of the same type. The procedure 
is able to predict new optical and electrical 
properties of a new indium based solid solution 
using a reasonable numbers of known experimental 
data. Therefore the procedure can reduce the time 
and costs of research and improve the study for 
new transparent conducting oxides. The procedure 
named minimax decision procedure is based on 
support vector machine in a minimax approach. 
Support vector machine (SVM) that is primarily a 
two-class classifier based on statistical learning 
theory was introduced by Vapnik, 1995,9 and 
studied by many others.9-13 Some important 
advantages of the support vector machine over 
other artificial intelligence techniques as artificial 
neural network are: (a) it makes no prior 
assumptions concerning the data distribution and 
does not assume normality of the data, as it is a 
non-parametric classifier, (b) provides better 

accuracy even with a small number of training 
samples, fast and simple in implementation, (c) 
avoids the specific problems such as over-fitting 
and local minima. A major drawback of the 
support vector machine consists in simple 
assessment of the same covariance for each class 
and thus the margin should be defined in a local 
way. Support vector machine in a minimax 
approach (MSVM) is a relative novelty research 
topic developed after 2002.14-16 Some proved 
advantages of the support vector machine in 
minimax approach over basic support vector 
machine: (a) avoids the drawback of SVM 
consisting in the simple assessment of the same 
covariance for each class and defining the margin 
in a local way, (b) unlike SVM, for which the 
closest points to the decision boundary are most 
important, the minimax approach looks at the 
margin between the means of classes, (c) provides 
an explicit direct upper bound on the probability of 
misclassification of new data, without making any 
specific distribution assumptions and (d) obtains 
explicit decision boundaries based on available 
data. However, as with SVM, MSVM is 
computationally relatively expensive and requires 
extensive manually or cross validation experiments 
to choose functions and parameters that give good 
performance. MSVM presents many merits 
however little attention has been paid to apply 
MSVM in material science applications. Today we 
are unaware of others similar approaches related to 
this domain. Finally the paper presents a 
comparatively predictive study between a robust 
regression technique and our minimax decission 
procedure. For simplicity the study is reduced to 
predictions of new optical and electrical properties 
for indium based solid solution using existing 
experiments and experimental data. The results 
based on the developed procedure compared with 
new experimental measurements indicate a good 
agreement with experimental data. At the same 
time the results point out the ability of minimax 
decision procedure for predictive assessments in 
transparent conducting oxides systems and reveal 
the potential of minimax decision procedure in 
others engineering applications. 

EXPERIMENTAL 

1. Synthesis, homogeneity range  
and structure calculation 

In5.5+xSb1.5-3xW2xO12 solid solutions were prepared by solid-
state reactions from mixtures of pure In2O3, SnO2, WO3 and 
Sb2O3 powdered oxides in alumina crucibles heated in air. After 



 Indium based solid solution 371 

 

 

an initial heating at 600°C in order to ensure the full oxidation of 
Sb(III) into Sb(V), successive 12h annealing followed by air 
quenching were performed. In the case of In5.5+xSb1.5-3xW2xO12 
solid solution the presence of Sb5+ greatly facilitates the formation 
of M7O12 structure to the point that a final temperature of 1200 °C 
is sufficient to obtain a total reaction of precursors. Since this 
temperature is not enough to ensure a correct sintering of samples 
prepared for electrical resistivity measurements, we decided to 
systematically perform an additional annealing at 1300 °C. 
According to this experimental procedure, pure phases 
corresponding to the entire range of solid solution In5.5+xSb1.5-

3xW2xO12 (composition: 0≤ x ≤0.45) were isolated. The 
parameters (a and c) and volume (V) of the hexagonal cell were 
calculated and considered in their dependence on x. Fig. 1 
presents the corresponding variation of the hexagonal cell 
constants versus x. 

According to the experimental procedure described above, 
nine compositions of solid solution In5.5+xSb1.5-3xW2xO12 were 
obtained. The X-ray diffractograms were recorded on a 
Panalytical X’Pert diffractometer (Co Kα1 radiation) equipped 
with an X’Celerator detector, in the angular range 6-120º, 2θ. 
Their diffractogrammes are all very similar and also isotypic 
to In5.5Sb1.5O12 confirming the existence of a complete 
homogeneity range of this solid solution (composition: 0 ≤ x ≤ 
0.45). In order to prove the stability and truthfully of solid 
solution described above structure calculations have been 
performed by Rietveld analysis of diffractogrammes in a 

series of nine compositions. As an example, Fig. 2 presents 
calculated and observed diffractograms for the composition  
x = 0.2, In5.7W0.4Sb0.9O12, prepared at 1300°C. 

 
2. Physical properties measurements 

Experiments for optical diffuse reflectance spectra 
(%R(a.u.)) for nine compositions (x) of In5.5+xSb1.5-3xW2xO12  
solid solution registered with a double beam 
spectrophotometer (double beam Cary Varian 100 Scan 
spectrophotometer) show that the optical bandgap is shifted to 
higher energies with the introduction of W6+. This increase 
becomes significant for values of x ≥ 0.4 (80 cm-1) and it is 
accompanied by strong increase of the maximum percentage 
reflectance (Fig. 3). Clearly the optical characteristics of 
TCOs are altered from the higher contents in W6+ 
(composition x ≥ 0.4). 

Electrical resistivity (ρ) measurements on pellets treated at 
1300 °C in air were carried out by the four-probe method in 
the range of 5-320K, using a PPMS device. Fig. 4 includes the 
ρ = f (T) curves of the nine compositions of solid solution 
In5,5+xSb1,5-3xW2xO12. An overall increase of electrical 
resistivity of the solid solution In5,5+xSb1,5-3xW2xO12 as 
antimony content decreases, more specifically as Sb (V) is 
replaced by the pair 2/3 W (VI ) + 1/3 In (III), was observed.
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Fig. 1 – Variation of the hexagonal cell constants in the solid 
solution In5.5+xSb1.5-3xW2xO12 (after heating at 1300°C). 
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Fig. 2 – Observed (dots), calculated (lines) and difference XRPD pattern of In5.7Sb0.9W0.4O12 treated at 1300°C.  
Vertical bars indicate the positions of the reflections of the title phase (upper) and In2O3 (lower). 
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Fig. 3 – Measured optical reflectance in the compositions  

x =0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 of the solid solution In5.5+xSb1.5-3xW2xO12 after 1300°C. 
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Fig. 4 – Electrical resistivity (Ω.cm) versus temperature (K) in solid solution In5.5+xSb1.5-3xW2xO12, after heating at 1300°C. 

 
IMPLEMENTATION OF THE MINIMAX 

DECISION PROCEDURE 

Unlike Support Vector Machines for which the 
closest points to the decision boundary are most 
important, the minimax approach named minimax 
probability machine14-15 looks at the margin 
between the means of classes. Thus minimax 
classification is similar to maximum margin 
classification (minimising the maximum of 
distances between the classes) with respect to the 
mean of the classes, where a factor that depends on 
the covariance matrices of each of the classes 
pushes the threshold towards the class with lower 
covariance. Basically as was stated by Lanckriet14 
into a binary classification problem of z random 
vectors, with z1 and z2 denoting random vectors 
from each of two classes as 1z Class 1∈ and 

2z Class 2∈ , a hyper plane can separates these 
points, with maximal probability in respect to all 
distributions having mentioned means 1 2z ,z and 
covariance matrices 1 2,zz∑  By kernel function 

( , ) ( ) ( )i iK = Φ ⋅Φz z z z  simply mapping data into a 
higher dimensional feature space through a non-
linear mapping function ‘ Φ ’, minimax probability 
machine can adapt them to become a non-linear 
classifier. In this context a kernel represents a 
legitimate inner product into a high dimensional 

space called feature space F n (that is basically a 
Hilbert space). It let to define a similarity measure 
from the dot product in F n and learning algorithm 
using linear algebra and analytic geometry. The 
basic idea is to map original d-dimensional input 
data points ∈ dZ R1 d(z , ..z )  from real input space 
into a high-dimensional feature space F n through a 
non-linear mapping function ‘ Φ ’ which is usually 
unknown. The choosing of the mapping function 
‘Φ ’ will enable to design a large variety of 
learning algorithms. Into this feature space a linear 
classifier-surface between the two classes 
corresponds to a non-linear decision-hyperplane 
into original input space (Fig. 5). Based on the 
kernel formulation for minimax approach a 
regression model into feature space named 
minimax probability machine regression15 was 
built as maximising the minimum probability of 
future predictions being within some bound of the 
true regression function (±ε).15 Basically starting 
from some unknown regression function  

  f : Rd →R  with a general form as ( ) ρ+= zy f   (1) 

the main task is to construct an approximation for 
“f” such that  

 for any  z ∈Rd , )(ˆˆ zy f= . (2) 

The minimax probability machine regression 
model will approximate this function only into 
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feature space by nonlinear regression using the 
basis formulation: 

 kbiK
N

i if +∑
=

== ),(
1

)(ˆˆ zzzy β  (3) 

Here ( , ) ( ) ( )i iK = Φ ⋅Φz z z z  in the feature space is 
so-called kernel function satisfying Mercer’s 
conditions and N represents the number of learning 
examples (points). The others, βi are weighting 
coefficients and ‘bk’ offset of the minimax 
regression model, obtained as outputs of the 
minimax probability machine regression from the 
learning data. Generating two classes that are 
obtained by shifting the dependent variable ±ε the 
regression problem was reduce to a binary 
classification problem into features space (Fig. 6). 
The regression surface is interpreted as being the 
boundary that separates the two classes, 
successfully and wrongly predicted. The strength 
of this regression model comes from its ability to 
represent very high dimensional input space 
through kernel functions with great resistance to 
over-fitting. The resulting model is independent 
from the dimensionality of the input space. The 
nonlinear regression function eq. (3) is only a 
formal basis function formulation. Because 

( , ) ( ) ( )i iK = Φ ⋅Φz z z z  is done implicitly the issue 
is solved numerical. Thus, all computations related 
to ‘Φ’, will be carried on by kernel function into a 
higher dimensional feature space. Instead of ‘d’ 

features now ‘n’ features represent inputs vectors 
and the kernel map evaluates at all of the other 
training inputs.15 Based on these statements 
minimax decision procedure casts both regression 
(numerical values as outputs) and classification 
(class labels as outputs) into a global unified 
technique. Fundamentals principles also a basic 
flowchart of minimax decisions procedure and 
others details were previously presented.17-19 The 
procedure was conducted in a crude manner, 
without outliers’ detection and no features 
selection or reduction. The errors were estimated 
by testing rather than by calculation during the 
training steps (learning and testing) in order to 
build and estimate the model. To carry out the 
most basic testing method (simple testing) a 
random percentage of the database (10-30%) is set 
aside and used in testing step. To ensure a good 
distribution of the data in data sets and stability of 
the procedure the simulations was conducted based 
on data randomly divided into a number of distinct 
learning and testing subsets. The implementation 
was developed as a user-friendly computer 
application in MATLAB software environment 
and works in a multiple cyclic steps. This time for 
simplicity the performance of procedure was 
investigated based only on single metric criterion, 
the relative error between the predicted (outputs) 
and the corresponding test targets: 

 

  

 [%]100
predictedY

testYpredictedY
RE ×

−
= 









 )(
. (4) 
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Fig. 5 – The principle of kernel map. 



 Indium based solid solution 375 

 

 

 

+ε 

-ε Classification boundary as 
a “regression surface”  

 
Fig. 6 – Formulating regression as a binary classification into feature space. 

 
The performance criterions are evaluated with 

all values reconverted into the original real 
Euclidian Rd space. To obtain generalisation and 
robustness computer programs were coded in a 
convenient way to find the best models over a 
number of “k” cyclic experiments (simulations). 
Formally the best model means model that 
performs best. It involves best kernel function, 
kernel parameters and outputs. Basically as 
previously mentioned Lanckriet et al.14 one 
typically has to choose manually or determine it by 
tenfold cross validation. This time we preferred a 
simple-empirical but heuristic principle for setting 
the type of the kernel function. Homogenous and 
inhomogeneous polynomial kernel also Gaussian 
radial basis function kernel were tested. The kernel 
type that yields to the best performance was put 
aside and considered for the best model. This time 
was a Gaussian radial basis function (Table 3-4) 
with standard width kernel (σ ) tuned using 10-fold 
cross validation. The best model over these “k” 
cyclic simulations and the corresponding output 
values emerged from the minimax decision 
procedure was defined as the sample model. Long 
random trials (k > 100) do not get improved 
accuracy or more reliable predictions. Taking this 
aspect into account, it was considered appropriate 
to obey some statements20,21 and to work with a 
reduced learning set limiting the trials to k = ≤ 100. 
To avoid very different scales of variation between 
different inputs the data is scaled (brings the range 
of variation) between -0.5 ÷ +0.5. Also to ensure a 
good distribution of the data in every data set the 
data was randomised. The proper size and selection 

of the training set (randomly divided into learning 
and test subsets) is very important to produce 
optimal results and to increase the performance of 
the algorithm. So far, there are no uniquely agreed 
and generalised approaches to choose the suitable 
dimension and the selection of the training set. 
However, it is a commonly agreed statement that 
the training set must be sufficiently large compared 
with the number of features. In principle the 
procedure obey the statements.12, 20 Subsequent to 
its establishment the sample model will be used for 
predictions on other new and unseen of the same 
type data set, accordingly any new targets. 

RESULTS AND DISSCUSION 

Data sets for numerical applications are 
obtained by measurements of optical diffuse 
reflectance related on wavelengths and electrical 
resistivity related on temperature. Details of 
database for the case studies are presented in 
Tables 1 and 2. Two comparative procedures, our 
minimax decision procedure and a robust 
regression technique (a Total Least Squares 
regression based on Principal Component 
Analysis) were conducted and reported to the same 
data sets. The applications are related to 
predictions of new diffuse reflectance and 
electrical resistivity values for mentioned 
compositions samples of indium-based solid 
solution. Experimental parameters of interests were 
wavelength, temperature and composition (x) of 
every experimental specimen. Because of 
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relatively few variables of dependence related to 
measured properties we consider this robust 
regression technique suitable for the investigation 
of relationships between variables. For simplicity 
only the x = 0.2 sample compositions was 

considered for analyse and comparison with 
predictions. Also the performance of the 
application was investigated based only on the 
relative errors criterion Eq. (4).  

 
Table 1 

Values of experimental measured data for diffuse reflectance 

Optical reflectance %R [a.u.] Sample 
composition Range Mean Standard deviation 
Experimental 
parameter  

Range of Wavelengths = 192÷900[nm] 

x1 = 0.05 13.7518 ÷0. 984 8.6374e 4.455 
x2 = 0.1 16.6453 ÷0. 227 10.4741 5.8845 
x3 = 0.15 20.7124 ÷0.288 12.2853 7.2658 
x4 = 0.2 22.8461 ÷0. 315 13.7726 8.7582 
x5 = 0.25 25.7969 ÷0. 157 15.7364 9.3717 
x6 = 0.3 27.1506 ÷0. 179 16.4691 10.191 
x7 = 0.35 29.9434 ÷0. 551 18.5490 10.8368 
X8 = 0.4 31.9331 ÷0. 153 20.1809 11.5252 
X9 = 0.45 33.7252 ÷0. 237 21.5595 12.3494 
• x – content compositions of W6+ – defining sample specimen 
 

 
Table 2 

Values of experimental measured data for electrical resistivity 

Electrical resistivity [ohm.cm] Sample 
composition Range Mean Standard deviation 
Experimental 
parameter  

Range of Temperature = 9.9667 ÷320[oK] 

x1 = 0.05 (8.14÷9.24)×10-3 8.5731×10-3 3.7155×10-4 
x2 = 0.1 (1.3÷1.529)×10-3 1.3911×10-3 7.3821×10-4 
x3 = 0.15 (6.98÷7.01)×10-3 6.99×10-3 1.0473×10-5 
x4 = 0.2 (1.694÷1.827)×10-2 1.7461×10-2 4.7638×10-4 
x5 = 0.25 (1.646÷ 2.2018)×10-1 1.8732×10-1 2.0268×10-2 
x6 = 0.3 (1.5059÷1.7603)×10-1 1.6335×10-1 8.3343×10-3 
x7 = 0.35 (3.0882÷6.0503)×10-1 4.3348×10-1 1.0414×10-1 
X8 = 0.4 1.5285÷1.9373 1.7069 1.2855×10-1 
X9 = 0.45 (3.2689÷4.3505)×10-1 3.2689×10-1 3.6662×10-2 
• x – content compositions of W6+ – defining sample specimen 
 

 
1. Establish of sample model  

based on training steps 

Main conditions of simulation and partial 
results are done in Tables 3 and 4. This time only 
for simplicity the performance of procedures is 
reported in terms of percentage relative error 
between the model predicted outputs and the 
corresponding test experimental measured. This 
shows the model performance in training steps. 
Based on these a kernel type having the form of an 
exponential radial basis function (Tables 3, 4) was 
proved to work well. Therefore the sample model 
was established based on this kernel type. For 

simplicity and for its “key point” we present model 
establishment and predictions related only to a 
single specimen of composition x = 0.2. Results 
are comparatively presented (Fig. 7). Differences 
regarding correspondences between predicted and 
test values (diffuse reflectance and electrical 
resistivity) are observed for both procedures. At 
first glance for diffuse reflectance, comparatively 
with minimax decision procedure the results of 
regression technique are unstable and lead to 
distorted predictions (Fig. 7a). It was found the 
percentage relative errors between -805 ÷ 55 [%]. 
These suggested that the robust regression 
technique model has poor generalisation capability. 
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Table 3 

The main conditions and partial results of simulations for diffuse reflectance 

 Minimax decission procedure Regression procedure 

Range of relative errors on 
test subset 

-7.543÷ 0.464 [%]  
based on Fig. 7a 

-805 ÷ 55 [%] 
 based on Fig. 7a 

Range of relative errors 
between new predictions 
and new experimental 
measurements 

-0.21 ÷ 8.23 [%] based on Fig. 8 Not utilised 

Wavelengths for new predictions and experimental measurements [nm]: 820, 827, 835, 842, 849, 
856, 863, 871, 878, 885, 892, 899. 
Kernel functions for minimax decision procedure 














−−= 22

2
σjiexp)j,i(K xxxx

 

Note: predictions and analyse was related only to x4 = 0.2 sample compositions. 
 

Table 4 

The main conditions and partial results of simulations for electrical resistivity 

 Minimax decission procedure Regression procedure 

Range of relative errors on 
test subset 

- 0.1056 ÷ 0.193 [%]  
based on Fig. 7b 

-0.226÷ 0.317 [%]  
based on Fig. 7b 

Range of relative errors 
between new predictions 
and new experimental 
measurements 

-0.941÷ 5.083 [%]  
based on Fig.9. 

-1.6÷ 6.077 [%] based on Fig. 
9. 

Temperature for new experimental measurements and predictions [oK]: 114.8639, 134.9055, 
154.9105, 174.8455, 194.9456, 214.8456, 234.8501, 254.8251, 274.8485, 294.8219, 314.7289. 
Kernel functions for minimax decision procedure 














−−= 22

2
σjiexp)j,i(K xxxx

 

Note: predictions and analyse was related only to x4 = 0.2 sample compositions. 
 

Because minimax decision procedure results’ based 
on sample model have the percentage relative errors 
between -7.543 ÷ 0.464 [%] suggested that model has 
good generalisation capability. By this reason only 
minimax decision procedure was utilised into new 
predictions for diffuse on compounds of the same 
type. For electrical resistivity the results of minimax 
decision procedure are closed to regression technique 
(Fig. 7b). The percentage relative errors between -
0.226 ÷ 0.317 [%] are in good agreement that 
suggested a good generalisation capability for both 
techniques. By of this reason into new predictions on 
compounds of the same type, for electrical resistivity 
both of the procedures were utilised. 

2. New properties predictions of indium  
based solid solution 

Because the procedure can be used to examine 
the effect of any individual input on the output 
parameter, based on established efficient predictive 

sample model new predictions of properties as 
optical and electrical properties of indium-based 
solid solution was realised. These new predictions 
were obtained based on two important 
experimental parameters: (a) wavelength for 
diffuse reflectance and (b) temperature for 
electrical properties of indium-based solid solution. 
These new predictions were obtained introducing 
in sample model a set of new unseen parameters 
(wavelength for diffuse reflectance and temperature 
for electrical properties). Comparatively new 
experimental measurements for optical and 
electrical properties at the same set of new unseen 
parameters were realised. The results are 
comparatively presented. Details of interests and 
some results for these new predictions are done in 
Tables 3 and 4. Fig. 8 presents predicted and new 
experimental measurements of diffuse reflectance 
values; also relative errors are reported. It was 
found that the percentage errors between new 
measured and predicted values are all within -0.21 
÷ 8.23 [%] which suggested that sample model has 
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good generalisation capability. In the same manner 
Fig. 9 presents predicted and new experimental 
measured values of electrical resistivity. Range of 
relative errors between predictions and new 
experimental measurements are between -0.941 ÷ 
6.077 [%]. Basically all predicted values are in 
good agreement with the new experimental values. 
At first glance, the minimax decision procedure 
results and the regression emerged results are in a 
reasonable good agreement, but the predictions 

obtained by the minimax decision procedure are 
superior to those obtained by the regression 
approach (Table 4 and Fig. 9). Therefore analyses 
based on minimax decision procedure can reduce 
the numbers experimental measurements and more, 
they can really to substitute experimental 
measurements with predicted values. Thus such 
analyses may decrease the number of experimental 
measurements and constitute a step in order to save 
time and costs in future research. 
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b. 

Fig. 7 – Relative errors between predicted and measured diffuse reflectance values: 
ο Relative errors from our procedure; � Relative errors from regression. 

7a. Relative errors between predicted and measured diffuse reflectance values in test data set; 7b. Relative errors between predicted 
and measured electrical resistivity values in test data set. 
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b. 

Fig. 8 – Comparatively results for diffuse reflectance of specimen with concentration x = 0.2 
ο Predicted data from our procedure; � New measured values. 

8a. Predicted and new measured diffuse reflectance values; 8b. Relative errors between predicted and new measured values. 
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b. 

Fig. 9 – Comparatively results for electrical resistivity of specimen with concentration x = 0.2 
9a. Predicted and new measured values, ∗ New measured values; � Predicted from regression; ο Predicted from our procedure. 
9b. Relative errors between predicted and new values, ο Relative errors from our procedure; ο Relative errors from regression. 

 
 

CONCLUSIONS 

Correlated predictions of properties based on 
experimental measurements are important factors 
to reduce the costs of researches in order to obtain 
new transparent conducting oxides. The paper 
implements minimax decision procedure based on 
support vector machine into a minimax approach 

developed in the MATLAB language. Numerical 
experiments demonstrate the capability of the 
proposed procedure. Instead of numerous and 
expensive experimental measurements the 
procedure is able to supply good prediction of 
particular variables of interest as diffuse 
reflectance values and electrical resistivity of solid 
solution In5.5+xSb1.5-3xW2xO12. An important goal of 
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the paper was to compare the performance of the 
procedure with a robust regression technique and 
to promote it as an effective technique in material 
science. This procedure proves to be an efficient 
instrument to build classification models instead of 
regression analysis or other cumbersome 
theoretical (sometimes inaccurate, simplified or 
incomplete) models. We may mention some 
advantages as: (1) the procedure works properly 
with a reduced training set, (2) the procedure needs 
relative few science-phenomena knowledge, (3) 
the procedure avoids cumbersome theoretical 
approaches. Furthermore, used with an appropriate 
experimental policy our framework is not limited 
to reduce the costs and the number of laboratory 
experiments. Future research will be focus on 
improving the properties of new transparent 
conducting oxides based on minimax decision 
procedure. 
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