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Molecular dynamics simulations have been performed to investigate the transport properties of self-diffusion coefficients in the 
penetrable-sphere model fluid. With increasing system densities, simulation results for the product of the packing fraction and the 
self-diffusion coefficient exhibit the transitional behavior: from a nearly independent function of density in lower repulsive systems, 
where the soft-type collisions are dominant, to a rapidly decreasing function in higher repulsive systems, where most particle 
collisions are the hard-type reflections due to the low-penetrability effects. In the systems of highly repulsive energy barriers, a poor 
agreement with theoretical and empirical predictions is observed even at moderate densities due to the cluster-forming structure and 
the phase transition from the fluid-like to the solid-like state.  

 
 

INTRODUCTION* 

When Professor Ionel Haiduc visited Korea in 
2009 for Korea/Romania Joint Workshop on 
Molecular Science and Engineering, gave a special 
lecture on the subject of molecular and 
supramolecular chemistry.1 A current progress in this 
research area, although not directly addressed in his 
lecture, has been associated with computer-based 
molecular simulations. In this way, new 
supramolecular materials, based on computer 
modeling and simulation techniques, can be 
fabricated with specific molecular structures in the 
processes of molecular recognition and supramolecu-
lar organization. Other simulation topics were also 
discussed with Professor Haiduc for further science 
and engineering applications demonstrated in the 
KISTI Supercomputing Center, Korea.  

Apart from some initial system parameters, 
only an input requirement is the model interaction 
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potential in order to perform the standard classical 
computational method including Monte Carlo, 
Brownian dynamics, and molecular dynamics 
calculations.2 For hard condensed matter, the 
steeply repulsive short-ranged potential rarely 
allows the overlapping configuration between two 
colliding particles, e.g., the hard-sphere and the 
Lennard-Jones potential. However, as observed 
even at the room temperature in the systems of 
molecular aggregates such as micelles and polymer 
chains in solution, the center of mass of two 
constitutive molecules can penetrate each other due 
to the weak interactions among structural elements 
and the delicate balance between the entropic and 
the enthalpic contributions to the free energy. In 
such soft condensed matter systems,3 it is often 
represented by the ultrasoft bounded potential, i.e., 
the effective interaction parameter.  

For theoretical and simulation investigations in 
soft condensed matter, one of the simplest and com- 
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monly used intermolecular pair-potentials is 
represented by the so-called penetrable-sphere (PS) 
model with the constant repulsive energy barrier. 
In late 1980’s, as a simple theoretical approach to 
the micelle in a solvent, Marquest and Witten4 
have first suggested the qualitatively similar step-
like interaction function in the explanation of their 
experimentally observed crystallization of 
copolymer mesophases, where a simple cubic solid 
phase coexisted with the disordered suspension. 
The PS model system has been the subject of 
several theoretical and simulation studies.5-8 An 
excellent review in this area up to 2001 can be 
found elsewhere in the literature.9  

One of the authors (SHS)10 has investigated two 
different theoretical predictions, based on the 
fundamental-measure theory proposed by 
Schmidt11 and the bridge density-functional 
approximation proposed by Zhou and 
Ruckenstein,12 to the inhomogeneous structure of 
PS model fluids confined within the spherical pore 
system. It is also reported in his group13 that the 
modified density-functional theory, based on both 
the bridge density functional and the contact-value 
theorem, has been applied to the structural 
properties of PS fluids near a slit hard wall, and 
that the Verlet-modified bridge function for one-
component systems proposed by Choudhury and 
Ghosh14 has been extended to PS fluid mixtures. 
More recently, together with the thermodynamic 
and structural properties of PS fluids, 15-17 
molecular dynamics (MD) simulation studies for 
dynamic transport properties have been carried out 
to add useful insights into the cluster-formation 
and relevant thermophysical properties in the PS 
model system.18-19  

As a continuation of theoretical and simulation 
approaches along this direction, the main 
motivation in the present work is to undertake the 
MD simulation study for the time-dependent 
transport properties of self-diffusion coefficients 
over wider ranges of densities and repulsive energy 
parameters. As an intermediate between theory and 
experiment, simulation studies are most 
challenging to prove into a better understanding of 
detailed diffusion processes in such model systems. 
The great advantage of simulation studies over 
experimental investigations lies in the possibilities 
of obtaining the detailed molecular motion and 
configurations in a phase space, which may be 
difficult to realize in the real laboratory. MD 

simulation data for the self-diffusion coefficient 
obtained in this work can be used to assess the 
applicability of various theoretical and empirical 
equations available in the literature. Our simulation 
studies can also be used to improve theoretical and 
empirical approximations for soft-condensed 
matter, which in turn will be helpful to construct a 
fundamental basis of theoretical and practical 
predictions in interpreting real experimental data.  

THEORETICAL APPROACH  
FOR SELF-DIFFUSION 

The pair-interaction between two penetrable 
spheres is defined as  

   (1) 

where σ is the diameter of penetrable spheres, and 
ε (>0) the strength of the repulsive energy barrier 
between two overlapping spheres when they 
penetrate each other. The penetrable-sphere model 
reduces to the hard-sphere (HS) system when 
ε*≡ε/kT → ∞ (where k is the Boltzmann constant, 
and T the temperature). This is equivalent to the 
zero-temperature limit T*≡kT/ε → 0. In the 
opposite high-temperature or high-penetrability 
limit (T* → ∞, or ε* → 0), the PS system become 
a collisionless ideal gas. Except in the HS case, 
penetrability allows one in principle to consider 
systems with any value of the nominal packing 
fraction φ≡(π/6)nσ3, where n (≡N/V) is the number 
density.  

In the low density regime (φ → 0), the transport 
coefficients of a gas made of particles interacting 
via a given potential can be derived by the 
application of the Chapman-Enskog method20 to 
the well-know Boltzmann equation. By using the 
first Sonine approximation, the self-diffusion 
coefficient obtained from the Boltzmann equation 
for the PS model is given by21 

   (2) 

where 

   (3) 

with 

 
   (4) 
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Obviously, in the low-penetrablity limit (ε* → 0), 
the self-diffusion coefficient for the PS model in 
Eq. (2) reduces to that of the HS model, namely,  

  (5) 

As noted above, Eqs. (2) and (3) are derived 
from the Boltzmann equation in the first Sonine 
approximation, and thus they are well justified in 
the high-dilution limit (φ → 0). On the other hand, 
they do not account for finite-density effects. To 
correct this deficiency, several empirical or 
semiempirical expressions have been proposed in 
the case of the HS model. Among them, the most 
basic one is provided by the Enskog kinetic 
theory.20 The Enskog correction for the self-
diffusion coefficient in the HS system can be 
written as  

   (6) 

where the Enskog factor  is directly related to 
the contact value of the radial distribution function 
in the HS system, i.e., .  

Eq. (6) takes into account that the effective 
number of collisions in a dense gas is increased by 
a factor , i.e., . Consequently, the 
self-diffusion coefficient is decreased by the same 
factor, relative to the Boltzmann prediction at the 
same density. Theoretically in the HS model, an 
excellent approximation for  within the stable 
fluid region ( can be provided by 
the Carnahan-Starling formula22 

   (7) 

In statistical thermodynamic relations the 
Enskog factor in Eq. (6) can also be associated 
with the corresponding equation of state in terms 
of the compressibility factor Z (≡PV/NkT). For the 
HS system, one may have 

   (8) 

and, similarly, for the PS fluid system, 

     (9) 

with  

   (10) 

The parameter x shown above represents the 
degree of penetrability of the PS particles ranging 
from x = 0 in the free-penetrability limit to x = 1 in 
the HS impenetrability limit.  

There are also a number of empirical formulas 
for the HS self-diffusion coefficient. For the 
systems of 500 particles or slightly fewer, the 
following analytical fit to MD data was reported by 
Speedy23 

 
 (11) 

 
Here,  0.57 is the packing fraction at the 

HS glass transition and Speedy’s values are      
c1 = 0.48 and c2 = 1.17. Recently, more extensive 
MD computations were performed by 
Sigurgeirsson and Heyes24 with an efficient MD 
algorithm dealing with up to 32,000 HS particles. 
They refined the values of the fitting coefficients 
c1 and c2 in Eq. (11) as c1 = 0.4740 and        
c2 = 1.1657. This empirical form takes into 
account the crowding effects in the first bracket 
term and the hydrodynamic backflow effects at the 
intermediate densities in the second bracket term. 
Both the Enskog formula in Eq. (6) and the 
empirical expression in Eq. (11) have in common 
the fact that, as expected on physical grounds, 

, i.e., the self-diffusion coefficient 
decays more rapidly than hyperbolically with 
increasing density.  

Based on the Enskog result in Eq. (6), it seems 
natural to propose the following Enskog-like 
expression 

    (12) 

where  is given by Eq. (2) through Eq. (4). In 
this simple heuristic equation, the Enskog factor 

 can be given either from  in Eq. (9), or 
from , i.e, the contact value of the radial 
distribution function in the PS model.  

RESULTS AND DISCUSSION 

All MD results reported in this work are scaled 
to dimensionless quantities by using a unit particle 
diameter σ, a unit particle mass m, and a unit 
thermal energy kT. In these system units the 
reduced self-diffusion coefficient is expressed as 

. The resulting MD data for the 
self-diffusion coefficients are measured by the 
temporal integration of the velocity autocorrelation 
function using the Green-Kubo formula, and also 
by the slope of the mean-square displacement 
versus time using the Einstein relation. In our MD 
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simulations those two methods have produced 
consistent results, typically less than 3% 
differences.  

By using a semilogarithmic scale in Fig. 1, we 
have illustrated the product  as a function of 
the packing fraction φ. As one may expect, the 
self-diffusion coefficient (not the product of  
as displayed in this figure) tends to decrease with 
increasing PS densities. For the repulsive energy 
barrier effects, the similar trend is detected: lower 
repulsive systems tend to promote larger 
diffusivities in PS particles. This behavior is not 
counterintuitive. To add more repulsive 
interactions will enlarge the effective hard-
collision diameter between two colliding particles, 
leading to impede the diffusion process in the PS 
system. In addition, there are also several 
interesting diffusion behaviors observed in this 
figure: (i)  for all sets of ε*-values, (ii) 

 for all sets of φ-values at a given  
ε*-value, and (iii)  for the lower 
density regime, while  for the higher 
density regime for all sets of ε*-values.  

Case (i) can be easily understood in terms of the 
energy barrier effects as explained above. In this 
case, the reduced PS collision integral  
calculated from Eqs. (2) and (3) is always less than 
unity. In the dilute regime (φ → 0), as can be 
deduced from Fig. 1 by the extrapolation of MD 
diffusion data up to φ = 0.0, a remarkably good 
agreement with  can be found for all sets of 
ε*-values. This confirms the validity of PS kinetic 
approaches, recently developed by Santos,21 in the 
context of the Chapman-Enskog method for the 
Boltzmann equation of dilute gases. In case (ii), 

 and , as appeared in Eq. (12), are simply 
related to the contact value of radial distribution 
functions. The corresponding  becomes 
larger values with increasing the packing fraction 
due to the particle crowding effects near the 
contact distance, and thus , and, 
similarly, .  

As regards for case (iii), this self-diffusion 
behavior may be interpreted from the two types of 
collision events occurring between the two 
colliding PS particles, namely, the soft- and hard-
type collisions. Soft-type encounters give rise to 
the primary external collision at r = , followed 
by the secondary internal collision at r = . In 
contrast to the hard-type reflection, the soft-type 

collision does not interrupt too much about PS 
particle trajectories along the scattering direction. 
Consequently, the soft-type collisions contribute to 
the enhancement of self-diffusion coefficients, 
whereas the hard-type collisions to the retardation 
of particle diffusion processes. In this diffusion 
behavior, the hard-type collisions are gradually 
dominant with increasing ε*-values. In the two 
cases of ε* = 3.0 and 4.5, as increase system 
densities, such repulsive barrier effects are more 
dominant with the structural changes and the phase 
transition from fluid-like to solid-like states. 
Moreover, in higher density regimes, the cluster 
formation among PS particles significantly retard 
the particle diffusion behavior, as can be seen in 
Fig. 1 (e.g., φ > 1.3 for ε* = 3.0, and φ > 1.1 for   
ε* = 4.5). 

In the semiempirical Enskog theory, as 
proposed in Eq. (12), many-body clustering effects 
are totally ignored in PS structural complexities. 
However, in predicting the self-diffusion 
coefficient from the simple heuristic theory, only 
two-body (or pairwise) structural correlations are 
considered by using the PS radial distribution 
function. Although not displayed in this figure, 
noticeable discrepancies are found in evaluating 
the PS Enskog factor between the compressibility 
route in Eq. (8) and the direct measurement of  
from  in Eq. (12), particularly in the case 
of ε* > 3.0. As reported in previous simulation 
studies,15 such discrepancies are likely due to the 
appearance of cluster-forming structures in the PS 
system, implicitly indicating that the 
configurational states reached are not in the strict 
thermodynamic equilibrium due to long-lived 
metastable solid-like states in our MD simulations. 
One of the interesting features clearly displayed in 
the PS system, which cannot be observed in the HS 
system, is that MD data for the product  
exhibit a transition from a nearly independent 
function of density (ε* = 0.75), where the soft-type 
collisions are dominant, to a rapidly decreasing 
function (ε* = 4.5), where most particle collisions 
are the hard-type reflections due to the low-
penetrability effects. For the case of ε* = 0.75, a 
simple HS-type Enskog prediction in Eq. (12) 
shows a reasonably good agreement with MD 
diffusion results.  
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Fig. 1 – The product of the packing fraction φ and the reduced self-diffusion coefficient  as a function of the packing fraction φ 
for the PS model system. The symbols denote MD simulation results for the PS system; the dotted and the solid lines, respectively, 
correspond to the Enskog prediction in Eq. (6) and the empirical MD data in Eq. (11) for the HS system; the chain-dotted lines 
represent a simple Enskog-like approximation in Eq. (12), complimented with the MD-values of . The statistical errors for 
                                      MD results are smaller than the symbol size.  

 
For the pure HS fluid, it has been reported23,24 

that reliable self-diffusion data can be obtained 
from the Enskog kinetic equation over the range of 
equilibrium stable fluids (φ < 0.494). One may see 
this argument by comparing MD-fitting diffusion 
data in Eq. (11) (the solid line) with Enskog 
theoretical approximations in Eq. (6) (the dotted 
line). In the present studies, the Carnahan-Starling 
formula in Eq. (10) was employed to evaluate the 
contact value of the HS system, which is known to 
be very accurate for the HS system. Although not 
shown quantitatively in Fig. 1 (the resulting curves 
are drawn for the -values, but not for the -
values), MD-fitting data for the self-diffusion 
coefficient in the HS fluid indicate slightly larger 
values than the Enskog predictions at the 
intermediate densities (at most 5% differences in 
the systems of 32,000 HS particles24), followed by 
a rapid fall when the HS crystallization is 
approached. For the PS systems of ε* = 4.5, a 
similar trend with the HS fluid is observed from a 
simple Enskog-like prediction in Eq. (12) 
complimented with the MD contact values (the 
chain-dotted line). For this highest repulsive 

condition, MD data for φ < 0.2 are very close to 
this theoretical equation, and, at the intermediate 
density of 0.2 < φ < 0.4, only marginal errors are 
exhibited. Beyond this density range, the deviation 
starts to be noticeable with increasing φ-values.  

CONCLUSIONS 

In the present work, for the comparison purpose 
with various theoretical approximations available 
in the literature, molecular dynamics simulations 
have been carried out over a wide range of the 
packing fractions and the repulsive energy 
parameters to investigate self-diffusion properties 
in the PS fluid. In the zero-density regime, an 
excellent agreement is found with the Boltzmann 
kinetic equation in the first Sonine approximation 
for the PS fluid. In contrast to the HS system, it is 
observed for the PS fluid that the resulting MD 
data for the product of the packing fraction and the 
self-diffusion coefficients exhibit a transition from 
a nearly independent function of density in lower 
repulsive systems, where the soft-type collisions 
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are dominant, to a decreasing function in higher 
repulsive systems, where most particle collisions 
are the hard-type reflections due to the low-
penetrability effects. The deviations from MD data 
against a simple Enskog-like approximation 
becomes more profoundly exhibited with 
increasing densities due to the cluster-forming 
structures and the phase transition from fluid-like 
to solid-like states. For the high repulsive system 
of ε* = 4.5, for instance, a simple Enskog-like 
approximations can be applicable only with the 
narrow range of densities of φ < 0.4.  
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