
 

 

ACADEMIA ROMÂNĂ 

Revue Roumaine de Chimie 

 http://web.icf.ro/rrch/ 

 
Rev. Roum. Chim., 

2012, 57(4-5), 469-475 

 

Dedicated to Professor Ionel Haiduc 
on the occasion of his 75th anniversary 

THEORY AND SIMULATION OF TRANSPORT PROPERTIES 
FOR PENETRABLE-SPHERE MODEL SYSTEMS: II. SHEAR VISCOSITY 

Jose Maria CALDERON-MORENO,a Monica POPA,a Viorica PÂRVULESCU,a  
Nicolae STĂNICĂ,a and Soong-Hyuck SUHb* 

a “I.G. Murgulescu” Institute of Physical Chemistry, Roumanian Academy, 202 Splaiul Independenţei,  
Bucharest 060021, Roumania 

b Department of Chemical Engineering, Keimyung University, Daegu 704-701, Korea 

Received February 1, 2012 

Molecular dynamics simulations have been carried out to investigate the collective transport properties of shear viscosity coefficients 
in the penetrable-sphere model fluid. A qualitative agreement is found between simulation results and an empirical Enskog-like 
approximation proposed in this present work. However, the mismatching tendencies are gradually growing with increasing both 
densities and repulsive energy parameters due to the cluster-forming structure and the phase transition from the fluid-like to the solid-
like state. In addition, relevant historical background on viscosity is addressed to sketch the traditional kinetic theory of gases and 
simulation-based computational approaches. 

 
 

INTRODUCTION* 

This series of two papers, dedicated to 
Professor Ionel Haiduc, is concerned with 
theoretical and simulation studies to investigate the 
dynamic transport properties of penetrable-sphere 
(PS) model systems by using the molecular 
dynamics (MD) simulation method: the former 
article for the self-diffusion and this one for the 
shear viscosity. From a theoretical point of view, 
likely the hard-sphere (HS) interaction to hard 
condensed matter, the PS potential model has a 
character of the idealized reference system in soft 
condensed matter. In this way, the PS system can 
be used as a stringent benchmark to test various 
computational and statistical mechanical 
approaches1-11 in soft condensed systems such as 
colloids, polymers, liquid crystals, and a number of 
biological materials.  
                                                 
* Corresponding author: shsuh@kmu.ac.kr 

As mentioned briefly in the introductory part of 
the previous paper, the most spectacular increase in 
science and engineering capabilities has been 
demonstrated in high-performance computing 
related with technical advances in both hardware 
and software. This has enabled the development of 
computational modeling and simulations with great 
speed and accuracy. As an intermediate between 
theory and experiment, simulation approaches 
solve the fundamental physicochemical equations 
with incorporating the efficient computational 
algorithm.12 Computer simulations have accelerated 
progress in scientific understanding to design new 
materials and chemistries with predictive power, 
namely, in silico (via computer simulation) 
research.  

There are in general two classes of classical 
simulation approaches: stochastic Monte Carlo 
(MC) and deterministic molecular dynamics (MD) 
methods.13 The MC method generates a sequence 
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of independent configurations randomly according 
to the ensemble concept of Gibbs, while the MD 
method, based on the time-averaging concept of 
Maxell and Boltzmann, solves the Newtonian 
equations of motion in many-body systems. The 
MC method is suitable for calculating only static 
equilibrium properties, but can be cast in a variety 
of different ensembles. The MD method treats real 
time motion and can be used to obtain both 
thermodynamic and time-dependent properties.  

To the best of our knowledge, MD results for 
the shear viscosity coefficient in the PS model 
system have not been reported elsewhere in the 
literature. In the present work, we have proposed a 
simple heuristic Enskog-like approximation for the 
shear viscosity, and, for the comparison purpose, 
we have revisited the PS model system via the 
equilibrium MD method over a wide range of 
densities and repulsive energy parameters. 
Together with the existing approximations in 
Boltzmann and Enskog kinetic equations, our MD 
simulation results can be used directly to compare 
against various kinetic theory predictions and 
statistical mechanical approximations. In this role 
computer simulations are often referred to as 
machine experiment, in which essentially exact 
experimental data can be evaluated for precisely 
defined model systems.  

HISTORICAL BACKGROUD  
ON VISCOSITY 

Before embarking our research details, relevant 
historical background on viscosity will be 
described in this section to sketch the development 
of early kinetic theory of gases and simulation-
based computational approaches. Very recently, an 
excellent review article14 in this topic has been 
electronically published in arXiv.org, in which 
more references are cited.  

Maxwell15 was the first scientist who 
introduced the idea of random motion of atoms 
with the equilibrium statistical velocity 
distribution. In 1860, he established a relation 
between the shear viscosity and the mean free path. 
In his kinetic theory Maxwell demonstrated that 
viscosity could be proportional to the density, the 
mean free path, and the mean molecular velocity. 
On the other hand, the mean free path is inversely 
proportional to the density, and Maxwell’s 
viscosity equation indicated that an increase of 
pressure does not result in any change of the 
viscosity coefficient of gases. Maxwell believed 

that his predictions were absurd and therefore that 
the kinetic theory was wrong, or at least 
inadequate.  

Boltzmann16 extended Maxwell’s treatment of 
gas kinetic theories and proposed a probabilistic 
explanation. In 1872, Boltzmann attempted to 
establish the fundamental governing equation 
describing the changes in one-particle distribution 
function resulted from collisions between 
molecules, namely, the conservation of the 
probability density under its time evolution. The 
resulting integro-differential equation played a key 
role in determining the Boltzmann shear viscosity 
in the kinetic theory. In principle, the Boltzmann 
equation completely describes the dynamics of gas 
particles with appropriate boundary conditions. He 
also showed in his famous Boltzmann’s H-theorem 
that, whatever the initial distribution function, the 
collisions always push toward the equilibrium 
Maxwell distribution.  

In 1917, although the derivation known today is 
that of Enskog, the improved predictions were 
obtained from the kinetic transport theory 
independently by Chapman and Enskog.17 
Interestingly, Chapman started from Maxwell’s 
transport theory whereas the Enskog’s derivation 
was based on Boltzmann’s. Although it is a simple 
generation of the Boltzmann equation, the Enskog 
theory provides much accurate approximation to 
the transport phenomena, particularly in dense 
gases. Moreover, the analytical expressions for the 
transport coefficients in the kinetic theory can be 
adjustable for any given interaction potential. In 
the case of the hard-sphere potential in the dilute 
limit, the viscosity formula is now called as the 
Boltzmann viscosity, which confirms the 
temperature-dependence and the absence of 
density-dependence as predicted by the earlier 
Maxwell’s kinetic theories.  

As mentioned above, Maxwell showed in his 
kinetic theory that the viscosity coefficient is 
independent of the density. However, even in 
moderately dense gases, it appears that this 
property can no longer be observed experimentally. 
Enskog proposed an extension of his method 
predicting the density dependence. Considering a 
hard-sphere system, he assumed that the collision 
rate in a dense gas would be changed by a certain 
degree of structural factor, which is directly related 
with the equation of state. In hard-sphere systems, 
the Enskog factor is the same as the contact value 
in the radial distribution function. This argument 
leads to obtain the density dependent expression in 
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the kinetic theory of viscosity. Obviously, the 
Enskog factor reduces to unity only in the dilute 
gas limit.  

In 1960’s, Cohen,18 who is the Boltzmann 
medal laureate in 2004, proved that transport 
coefficients, in particular the viscosity coefficient, 
cannot be expressed in a power-series in terms of 
the density (analogous to the virial-expansion of 
the pressure in terms of the density). It was also 
shown that velocity correlations between 
molecules were observed over long distances, 
larger than the range of the intermolecular 
interaction. Although his contribution to the 
discovery of long-distance correlations may be 
great in the modern kinetic theories, these 
contributions do not seem to be significant in the 
viscosity of hard-sphere gases. Nevertheless, the 
Enskog prediction is still employed successfully in 
predicting numerical and experimental results.  

In 1950’s, a time-correlation function theory 
was first developed by Green19 and Kubo,20 
independently. They provided that, known as the 
Green-Kubo formulas, the transport properties can 
be expressed by the time-dependent velocity 
autocorrelations. It implies importantly that for all 
densities the transport coefficients can be 
calculated by the integral of time autocorrelation 
functions. In the case of dilute gases, this 
expression simply reduces to the Chapman-Enskog 
results. Soon after in the early 1960’s, Helfand21 
derived an alternative Einstein-like formula related 
to the variance of the so-called Helfand moments. 
For the time-dependent transport coefficients, the 
Green-Kubo expressions are related with the so-
called Einstein relations, i.e., the slope of mean-
square displacement curve in the long time limit. 
Both the Green-Kubo formulas and the Einstein 
relations are valid at any density and temperature 
condition, whereas the kinetic theory has only been 
successfully applied to low or moderate density 
states of gases.  

In 1970, the first MD calculation for viscosity 
properties in the systems of hard-disks and hard-
spheres was developed by Alder et al.22 In this 
pioneering simulation work for the discontinuous 
potential, they proposed an algorithm based on the 
generalized Einstein relations derived from the 
Green-Kubo formulas. The first MD application of 
the Green-Kubo method for the continuous 
Lennard-Jones 12-6 potential has been performed 
by Levesque et al.23 in 1973. We do not intend here 
to survey all possible theoretical approaches for 
viscosity in the literature, except for one important 

implementation made by Viscardy and his 
coworkers.24-25 In 2003, Viscardy’s research group 
has first applied the Helfand method to calculate 
viscosity coefficients for both continuous and 
discontinuous potentials during MD calculations. 
As proposed in their work, the Helfand-moment 
should be modified in order to satisfy the 
conventional periodic boundary conditions, and 
this can be expressed as an Einstein-like relation in 
terms of the variance of the Helfand moment. For 
the discontinuous HS system, their Helfand-
moment approach is equivalent to the generalized 
Einstein relations proposed by Alder et al.22 

THEORETICAL APPROACH FOR SHEAR 
VISCOSITY 

The so-called penetrable-sphere model potential 
is defined as  

    (1) 

where σ is the diameter of penetrable spheres, and 
ε (>0) the strength of the repulsive energy barrier 
between two overlapping spheres when they 
penetrate each other. The penetrable-sphere model 
reduces to the hard-sphere (HS) system in the low-
temperature limit (T*≡ kT/ε → 0, or ε*≡ε/kT → ∞, 
where k is the Boltzmann constant, and T the 
temperature), while the PS system become a 
collisionless ideal gas in the high-temperature limit 
(T* → ∞, or ε* → 0). Except in the HS case, 
penetrability allows one in principle to consider 
systems with any value of the nominal packing 
fraction φ≡(π/6)nσ3, where n (≡N/V) is the number 
density.  

In the low density regime (φ → 0), the transport 
coefficients of a gas made of particles interacting 
via a given potential can be derived by the 
application of the Chapman-Enskog method17 to 
the well-know Boltzmann equation. By using the 
first Sonine approximation, the shear viscosity 
coefficient obtained from the Boltzmann equation 
for the PS model is given by26 

        (2) 

where 

  (3) 

with 
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 (4) 

Obviously, in the low-penetrablity limit  
(ε* → 0), the shear viscosity coefficient for the PS 
model in Eq. (2) reduces to that of the HS model, 
namely,  

  (5) 

As noted above, Eqs. (2) and (3) are derived 
from the Boltzmann equation in the first Sonine 
approximation, and thus they are well justified in 
the high-dilution limit (φ → 0). On the other hand, 
they do not account for finite-density effects. To 
correct this deficiency, several empirical or 
semiempirical expressions have been proposed in 
the case of the HS model. Among them, the most 
basic one is provided by the Enskog kinetic 
theory.17 The Enskog correction for the shear 
viscosity coefficient in the HS system can be 
written as  

 
 (6) 

where the Enskog factor  is directly related to the 
contact value of the radial distribution function in 
the HS system, i.e., . Theoretically in the HS 
model, an excellent approximation for  within the 
stable fluid region (can be provided by the 
Carnahan-Starling formula22 

  (7) 

The HS Enskog formula for the sphere 
viscosity, as given in Eq. (6), can be represented by 
the different expression, i.e., 

 (8) 

where b (≡(2π/3)σ3) is the second virial coefficient 
of the HS fluid. The three terms in the bracket of 
Eq. (8) are related to the kinetic, cross and 
collisonal components, respectively. At liquid-like 
high density the last collisional term is the 
dominant component.  

In statistical thermodynamic relations the 
Enskog factor in Eq. (6) can also be associated 
with the corresponding equation of state in terms 

of the compressibility factor Z (≡PV/NkT). For the 
HS system, one may have 

  (9) 

and, similarly, for the PS fluid system, 

  (10) 

with  

   (11) 

The parameter x shown above represents the 
degree of penetrability of the PS particles ranging 
from x = 0 in the free-penetrability limit to x = 1 in 
the HS impenetrability limit.  

There are also a number of empirical formulas 
for the HS shear viscosity coefficient. From 
extensive MD computations with an efficient MD 
algorithm dealing with up to 32,000 HS particles, 
the following analytical fit to MD data was 
reported by Sigurgeirsson and Heyes27 

  (12) 

with the two fitting parameters of m = 1.92 and  = 
0.58. This equation reproduces MD shear viscosity 
data quite well within the equilibrium HS fluid 
range 0 < φ < 0.493. However, there is a rapid rise 
in the shear viscosity coefficient in the metastable 
density regime of φ ≥ 0.5. One must exercise 
caution carefully for the curve fitting in the 
metastable density range.  

Based on Eq. (6), we propose an empirical 
Enskog-like approximation for the shear viscosity 
in the PS model system. It is made of three steps: 
(i) replace the Boltzmann viscosity  by , as given 
by Eqs. (2)-(4) ; (ii) replace by ; (iii) replace φ by 
the product φx. Steps (i) and (ii) are quite evident, 
while step (iii) is inspired by Eqs. (8) and (9) and 
by the fact that in the limit the product φx 
is the relevant parameter combining density and 
temperature.4 In summary, an empirical Enskog-
like approximation for the PS shear viscosity 
proposed in this work can be written as 

  
(13) 
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In this equation, the Enskog factor can be given either 
from  in Eq. (10), or from , i.e, the contact value of 
the radial distribution function in the PS model.  

RESULTS AND DISCUSSION 

All MD results reported in this work are scaled 
to dimensionless quantities by using a unit particle 
diameter σ, a unit particle mass m, and a unit 
thermal energy kT. In these system units the 
reduced shear viscosity coefficient is expressed as . 
The resulting MD data for the shear viscosity 
coefficients are calculated by using the generalized 
Einstein relations developed by Alder et al.22  

In our MD investigations, the initial 
configurations with 864 penetrable spheres were 
generated by randomly inserting PS particles with 
velocities drawn from the Maxwell-Boltzmann 
distribution. The initial configurations were aged, 
or equilibrated, for 5106 collisions before 
accumulating the final simulation results. 
Additional ensemble averages were evaluated from 
a total number of 5108 collisions. Our MD 
algorithm has been tested in a number of ways. 
MD simulations for a few selected runs were 
compared with MC calculations reported in the 
literature.5 An excellent agreement with previous 
MC data again confirmed the validity of the MD 
method employed in this work. When the repulsive 
energy parameter was assigned to large values 

(typically, ε* > 3) in lower density regimes 
(typically, φ < 0.2), the shear viscosity coefficients 
obtained from our MD simulations faithfully 
reproduced those of the pure HS system.22,27  

By using a semilogarithmic scale in Fig. 1(a) 
and the original scale in Fig. 1(b) and (c), we have 
illustrated the reduced shear viscosity coefficient  
as a function of the packing fraction φ. Larger 
statistical uncertainties are observed in calculating 
the shear viscosity coefficients from MD 
simulations. The shear viscosity is related with the 
fundamental mechanism of momentum dissipation 
under the influence of velocity gradients. At the 
microscopic level, viscosity arises because of a 
transfer of momentum between fluid layers moving 
at different velocities, as explained by Maxwell 
and Boltzmann kinetic theory. Following this 
argument, the shear viscosity can be measured 
from the collective time-dependent behavior of 
many particles. In contrast, the self-diffusion 
behavior is a single particle property and is 
determined from the motion of each particle, i.e., 
the average over N-particles, resulting in better 
statistics for the self-diffusion than the shear 
viscosity under the same simulation condition.  

The detailed dynamic properties involved in the 
PS model systems has been already explained in 
the first series of papers, and we will summarize 
here only important findings for the shear viscosity 
properties displayed in Fig. 1.  

 

 
Fig. 1 – The reduced shear viscosity  as a function of the packing fraction φ in the semilogarithmic scale in (a) and the original scale 
in (b) and (c). The symbols denote MD simulation data for the PS system; the dotted and the solid line, respectively, correspond to 
the Enskog prediction in Eq. (6) and to the empirical MD data in Eq. (12) for the HS system; the chain-dotted lines represent an 
                                       emprical Enskog-like approximation in Eq. (13), complimented with the MD-values of . 
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(i) The HS shear viscosity coefficients of the 
Enskog HS equation is close to those of MD values 
within the narrow range of densities φ ≤ 0.3, and 
the deviations between them are getting larger with 
increasing the densities, for instance,  4 at  
φ = 0.555. By extrapolating MD data to the zero-
density limit, an excellent agreement is found with 
the Boltzmann kinetic equation for all sets of  
ε*-values.  

(ii) As observed in Fig. 1(a), MD results for the 
shear viscosity displays the linearly increasing 
tendency in the semilogarithmic scale. 
Furthermore, there is a transition tendency from a 
nearly independent (or, slightly increasing) 
function in lower repulsive systems, where the 
soft-type collisions are dominant, to a relatively 
rapid increasing function in higher repulsive 
system, where most particle collisions are the hard-
type reflections due to the low-penetrability 
effects.  

(iii) In contrast to the self-diffusion coefficients, 
a better prediction is achieved in higher repulsive 
systems (Fig. 1(c)) than lower repulsive ones (Fig. 
1(b)). As expected, the mismatching tendencies are 
gradually growing with increasing densities.  

(iv) In the two highly repulsive cases of  
ε* = 3.0 and 4.5 (Fig. 1(c)), the shear viscosity 
coefficients from MD simulations are close to 
those of HS predictions over the density regime up 
to φ ~ 0.4. The phase transition from the fluid-like 
to the solid-like state is indicated for the dense 
systems of φ > 1.2 (ε* = 3.0), and φ > 1.1  
(ε* = 4.5) as shown in Fig. 1(a). The Enskog-like 
theory strongly underestimates the values of the 
shear viscosity due to the cluster-forming structure, 
and, in this case, the collision contributions are 
more dominant than the kinetic contributions to the 
shear viscosity.  

Before concluding this section, it is of interest 
to return to one of the observations made earlier to 
explain some relevant shortcomings involved in 
the Boltzmann theoretical approximation. The 
failure of the Boltzmann kinetic approximation for 
the PS model fluid becomes more important as the 
density increases. This is not surprising: one may 
recall that the Boltzmann kinetic theory is based on 
the high-dilution limit. A key element related to 
this kinetic theory is the molecular chaos 
assumption, known as “Stosszahlansatz”, in which 
the precollision velocities of two colliding particles 
are assumed to be totally uncorrelated. In addition, 
regardless of a given model potential, the 
Boltzmann kinetic theory deals with only binary 

collision effects by totally neglecting multiple 
collisions. As observed in MD simulations for the 
PS model potential in this work, the deviation 
between our MD results and the Boltzmann 
predictions can be largely due to the neglect of 
such spatiotemporal correlations in the PS collision 
dynamics, particularly in dense system with 
cluster-forming structures.  

CONCLUSIONS 

In this series of two papers, we have carried out 
molecular dynamics simulations to investigate the 
time-dependent transport properties of the PS fluid 
over a wide range of the packing fractions and the 
repulsive energy parameters. Our MD results for 
the shear viscosity are compared directly with 
various theoretical approximations available in the 
literature including an empirical Enskog-like 
approximation proposed in this work. Similarly to 
the diffusion behavior, the deviations from MD 
data against our heuristic Enskog-like 
approximation becomes more profoundly exhibited 
with increasing densities due to the cluster-forming 
structures and the phase transition from fluid-like 
to solid-like states. In this case, the collision 
contributions become more dominant than the 
kinetic contributions to the shear viscosity. 
Reliable predictions, particularly for the systems of 
higher densities and higher repulsive energy 
barriers, may or may not be obtained from 
modified approximations by considering the 
structural effects (e.g., the effective packing 
correction, etc.) together with the energy effects 
(e.g., the mean-field energy correction, etc.). We 
are currently examining to extend our empirical 
Enskog-like predictions to the two limiting cases 
of high- and low-penetrability approximations in 
the PS model system. Further results will be 
reported with relevant MD data in the near future. 
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