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The author suggests a comparative analysis of the classical Euclidean rate equations and the fractal ones. The fractal kinetic equations 
contain the fractal dimension, property which could be used as a kinetic characteristic of the investigated solid-state reacting system. 

 
 

INTRODUCTION* 

In some previous notes, solid-gas decompositions 
limited by nucleation-growth phenomena were 
kinetically treated using euclidean as well as fractal 
models.1-3 Rigorously valid equations were obtained 
for extreme values of the nuclei fractal dimension 
and approximate ones for the intermediate ones. The 
consideration of the fractal character proves to be 
important in order to establish the form of the kinetic 
equations. As shown, for the solid-gas decomposi-
tions limited by nucleation-growth phenomena, the 
fractal rate equations could account for the fractional 
values of the time exponent in the integral kinetic 
equation nt .α ∝  

EUCLIDEAN RATE EQUATIONS4-11 

Surface controlled reaction  
or phase boundary controlled reaction4,5,11 

For fast diffusion through the product layer the 
chemical change is considered as phase boundary 
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controlled. Under such conditions the reaction rate 
is treated as being directly proportional to the 
surface area of the unreacted reactant. 
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where V0 is the initial volume of the reacting 
particle and α  the degree of conversion or 
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The integral form of equation (2) is: 
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 and 1 for three, two and one 

dimensional geometry of the reacting particle. 
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Diffusion controlled reactions 

Jander equation 

 According to Jander12 model the reaction rate 
of the component which is covered, A, in a system 
of spherical grains with comparable sizes is limited 
by the diffusion of the component, B, which covers 
through the product layer,AB. The model supposes 
that surface of the grain belongs to the reactant and 
that the concentrations of the diffusing component 
B at the interfaces A/AB and AB/B are constant. 

 For the kinetics of the reaction between 
reactante A and B under the form of compact 
powders Jander worked up the following integral 
equation: 
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where k is the rate constant, D0 the diffusion 
coefficient of the reactant B through the layer of 
product and r0 is the initial radius of the reactant A. 

Kroger and Ziegler equation13 
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Zhuravlev, Lesotkin and Tempelman equation,14 
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Gintsling and Braunshtein equation,15 
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Carter and Valensi equation,16-18 
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where z is the ratio between the volumes: actual 
(real) and ideal (if no change occurs) of the 
product layer. 

Anti Jander model could be treated as the 
reverse of Jander model. Accordingly the reaction 

rate is limited by the diffusion of the component, 
A, through the product layer at the interface AB/B. 
Anti Jander equation,19 
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Anti Ginstling Braunstein equation,20 
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All the presented kinetic equations describe 
various nonreacted shrinking core models. 

 Another model is based on continous bulk 
absorbtion of the reactant, B, in the reactant, A, the 
whole volume of the system changing gradually to 
the volume of the product, AB.21-22 Under such 
conditions the degree of conversion is given by: 
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where k is the rate constant given by: 
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FRACTAL RATE EQUATIONS 

Surface controlled reactions11 

As according to the fractal geometry the surface 
area of the reaction boundary, A, and the volume 
V0 are given by: 
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a and b  being constants,  
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with the fractal dimension is within the range; 

  32 ≤≤ D   

The integral form of equation (15) is: 
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For D=2 and D=3 equation (16) leads to the 
integral kinetic equations known as R2 and R3. 
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Diffusion controlled reactions 

For :32 ≤≤ D Ozao and Ochiai using the 
obvious relation: 
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Equation (19) with D=3 turns into: 
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which is a variant of Ginstling-Braunstein 
equation. 

Using relation (17) as well as the presented 
euclidean kinetic equations one obtains: 
Jander fractal equation, 
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Kroger and Ziegler fractal equation, 
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Zhuravlev fractal equation 

  2
0

02
1 2

]1)1[(
r

tkDD =−−
−

α   (23) 

 Anti-Jander fractal equation, 
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Anti Ginstling-Braunstein fractal equation,  
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The fractal kinetic equations are valid for the 
same systems which use euclidean rate equations. 

Slightly different values of the exponents which 
result as consequences of the change of euclidean 
dimensions into fractal ones are to be noticed. 

CONCLUSIONS 

The fractal rate equations are more general with 
respect to the euclidean ones.  

The fractal rate equations open the perspective 
of better quantitative treatment of the kinetic 
properties of solid-state reaction mixtures.   
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