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The model of adsorbed carbon can be a possible explanation of oscillations appeared in reactions with gaseous hydrocarbons. These 
oscillations can be explained kinetically by a reduced cubic equation. The obtained results are discussed. 

 
 

The interest in self oscillatory phenomena 
produced in heterogeneous catalytic reactions is 
caused for a large part by the possibility to perform 
catalytic processes more efficiently using 
unsteady-state operations. The oscillations cycles 
of different products may have different forms and 
surface phases with respect to each other. This can 
produce valuable informations on the mechanism 
of such reactions.* 
 The rate oscillations are only a kind of 
synchronization mechanism of individual oscillators, 
which produced macroscopic variation of the 
reaction rate. The general case is that of some non 
linear processes which take place on a local scale 
but are not visible to the outside, since the 
seemingly trivial case of a stationary rate is 
normally observed. Exploring such phenomena is 
in fact essential for understanding heterogeneous 
catalysis. This explain the great number of kinetic 
and mathematical models existing for the 
simulation of oscillations.1-11 In the last years, due 
to the improvement of experimental and theoretical 
methods, new oscillating heterogeneous catalytic 
system have been discovered and summarized.12 
 When one of the reactant is a gaseous 
hydrocarbon it happens that due to pyrolisis 
                                                 
* Corresponding author:  ionescu@chimfiz.icf.ro 

processes carbon may be obtained and deposited 
on the catalyst surface and in its bulk. 

In this case a slow catalyst deactivation occurs 
which can be a cause of producing chemical 
oscillations.13,14 The carbon deposition and the 
regeneration of the deactivated sites by oxidation 
represent the buffer step present in an oscillation. 
 In our previous papers15-23 we have developed 
an overall kinetic model for heterogeneous 
catalytic reactions taking into account the balance 
of chemical species and simplifying the 
corresponding mathematical equations. In its initial 
form the model was proposed for the total 
oxidation of methanol over an industrial palladium 
catalyst.15,16 The goal of this paper is to see if our 
model can explain the appearance of oscillations 
due to the adsorbed carbon on a catalytic surface. 

THE MODEL 

 Let now the reaction be: 

 X
CA B products+ →  (1) 

which, in case of the carbon presence, can be 
described by the following steps: 
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 1A X AX+ ←→   (2) 

 2B XX BXX+ ←→  (3) 

 3 3AX BXX AB X+ → +  (4) 

 4C X CX+ →  (5) 

In equations (1)-(5) A and B are a gaseous 
reactants, C the carbon impurity, X a free active 
site of the catalyst surface, AX and BXX are the 
reactive adsorbed species of A and B and finally 
CX is the adsorbed specie of carbon, involved in 
the buffer step of the system. 

Because the specie CX is irreversible adsorbed 
on the surface, the catalyst can be regenerate from 
its deactivation state by oxidation with oxygen. 
That is why the next equation: 

 5CX B CB X+ → +  (6) 

The kinetic model (2)-(6) is formed by two 
parts. The first one consists of three steps: two 
adsorption-desorption equilibria and an irreversible 
surface chemical reaction of Langmuir- 
Hinshelwood’s type. The second part consists of 
two irreversible steps: the adsorption of carbon C 
on the surface, which competes with A and B for 
the free sites X and a reaction of Rideal’s type of 
the adsorbed carbon with oxygen. The desorption 
of the products was assumed to be a fast one. 

In order to obtain an oscillatory behavior the 
model needs two coupled paths via only and 
species which, in this case is the free active site 
X.24  From the kinetic model, eqs (2) to (6), the 
following mathematical non-linear system 
containing three ordinary differential equations 
was obtained: 

 
[ ] [ ] [ ][ ]1 1 3A

d AX
k P X k AX k AX BXX

dt −= − −  

[ ] [ ] [ ] [ ][ ]2
2 2 3B

d BXX
k P X k BXX k AX BXX

dt −= − −  (7) 

 
[ ] [ ]4 5 [ ]C B

d CX
k P X k P CX

dt
= −  

where ki with i=1-5 are the rate constants of the 
reaction mechanism. 
 The free site conservation equation in terms of 
fractional coverage’s leads to: 

 [ ] [ ] [ ] [ ]1 2X AX BXX CX= − − −  (8) 

 Taking into account the Eigenberger’s 
hypothesis 25,26 that an equilibrium is almost non-
disturbed, in this case step (3) the additional 
restrictions were imposed: 

 ( )1/ 2
2 2 3 1 1 4 5, , , ,B A C Bk P k k k P k k P k P− −>> >>  (9) 

 Although disputable27 the restriction (9) is very 
attractive for the mathematical treatment because it 
simplifies the balance (8) which together with the 
assumptions: 

 [ ] [ ] [ ] [ ] [ ]2
2 2/ ,BXX k X k and BXX AX CX−≅   

  (10) 

becomes: 

 [X]=1-[AX]-[CX] (11) 

 In the same time, this restriction reduces the 
rank of the ordinary differential equations. 
 By considering the concentration into a form of 
fractional coverage and the equation (7) in a 
dimensionless form by dividing the system by k5PB 
a reduced system consisting of two differential 
equations namely: 

( )* * * 2
1 1 321 (1 )A

dx k P x z k x k x x z
dτ −= − − − − − −  (12) 

 ( )*
4 1dz k x z z

dτ
= − − −  (13) 

was obtained when 
* * *1 1 4

5 1 1 4
5 5 5

, , ,B
B B B

k k kk P t k k k
k P k P k P

τ −
−= = = =  and 

* 2 3
32

2 5 B

k kk
k k P−

= . 

 The mathematical model contains now two 
autonomous ordinary differential equation a cubic 
(equation (12)) and a linear one (equation (13)). 
 All the variables of equation (12) and (13) have 
a physical meaning as long as they are not negative 
in the region R where they have been studied and 
R{x,z; x≥0; z≥0; x+z≤1} with x = [AX] and 
z=[CX]. 
 The steady state of the system (12) and (13) can 
be obtained by solving the reduced cubic equation. 

 y3 + py + q = 0 (14) 

as we have proved earlier.15,16, 20-23 The coefficients 
p and q are both functions of ki

* as presented 
elsewhere15-17. 
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 Solving this reduced cubic equations a lot of 
behaviors were obtained: stable solutions, regular 
or damped oscillations, stable nod, focus or saddle 
points.15,16 
 If that the concentration of oxygen is not 
enough to obtain CO2 then: 

 CX + ½ O2→ CO + X (15) 

This last equations must be added to the former 
system. The conclusions are the same with the 
observation that k5PB must be replaced by 

2

" 1/ 2
5 Ok P . 

The oscillations consist of periodic cycling 
between states of low and high reaction rates.28,29 
When the diffusion of carbon from the bulk 
prevails, the fraction of active site decreases till to 
a critical value and the reaction rate drops sharply 
to a low state of activity. In this case the surface is 
covered by CO molecules linearly bounded.29 In 
the state of high reaction rate the surface is covered 
by a substantial amount of oxygen as revealed by 
IR-reflectance spectroscopy.29 The surface carbon 
formation is inhibited by the presence of adsorbed 
CO and the fraction of active sites increases until 
ignition occurs and the cycle is repeated. 
 This carbon model opens also some 
discussions. The high CO coverage is typically 
found with low reaction state, implying a low 
coverage of oxygen.5 This makes it difficult to 
imagine that C atoms could be easily removed in a 
low-reaction-rate state. The temperature required 
for carbon combustion are higher than those for 
which oscillatory CO oxidation on Pt have been 
observed.6 Also the rate of carbon diffusion from 
the bulk seems to be to slow to guarantee the 
observed period of oscillations. Nevertheless, the 
carbon model, which is supported by some 
experimental evidence remains a possible 
explanation for oscillations, at least at atmospheric 
pressure. 
 The reduced cubic equation (14) represents well 
unstable behaviors not only in cases with two15-17 
or three reactants an the surface, but also in the 
presence of subsurface oxygen,10,21 the existence of 
two irreversible reactions on the surface22 or in the 
presence of a non-reactive adsorbed species on the 
surface.23 In the present case this equation was 
proved in a system with four or five different 
reactants on the surface. 
 The carbon model belongs to the group of 
isothermal models which have been obtained in the 
approximations that the lateral interactions of 
adsorbed molecules are not taken into 
consideration and high surface mobilities are 

assumed. These models use Langmuir-
Hinshelwood or Eley – Rideal mechanism or 
sometimes both mechanisms together. 
 In modeling oscillations two essential aspects 
have to be considered: on the microscopic level to 
find the smallest unit which is capable to oscillate 
and on macroscopic scale to find  the global 
synchronization mechanism which produces the 
macroscopic  variations of the reaction rate. 
 There are three different mechanisms that can 
act as a synchronization force.5 These mechanisms 
are thermal synchronization through the catalyst, 
through its support or the gas phase.5 Other 
possible mechanisms on the catalyst surface are the 
surface diffusion of the adsorbed species or the 
phase transition of the surface structure.30 Which 
of these processes are dominant depend on the 
individual system. 

CONCLUSIONS 

 The carbon model is one of the possible 
explanation of the appearance of oscillations in 
reactions with gaseous hydrocarbons. These 
systems can be described kinetically by a reduced 
cubic equation which explains also other 
instabilities in heterogeneous solid-gas systems.  
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