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Computational toxicology is a new discipline in the area of 
computational molecular sciences, which is rapidly developing 
as a result of the public interest stirred by several European and 
US initiatives. Here, we report the use of primary high 
throughput screening (HTS) data as biological descriptors to 
complement the chemical descriptors for the modelling of the 
acute toxicity. The combination of biological and chemical 
descriptors was performed on the median lethal dose following 
oral administration in rats (rat LD50). The hybrid model 
developed based on chemical and biological descriptors is 
superior to models based on the chemical or biological 
description alone. Using this model, besides the accurately 
prediction of a compound’s toxicity we also identified molecular 
fragments whose presence may contribute to increase or decrease 
of the toxicity. 

 

 
 

INTRODUCTION* 

 Chemical-induced toxicity is a major concern 
for healthcare professionals, cosmetic industry, 
flavour and fragrance, as well as lawmakers and 
chemical safety regulators. It is of particular 
concern in pharmaceutical drug discovery and 
development, and its evaluation is mandatory for 
the approval of new drugs for human use. The 
impact of toxicity and safety related events on the 
development of new chemicals is substantial, 
whether it relates to medicines1, environmental 
chemicals or other chemicals. The United States 
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passed the Toxic Substances Control Act (TSCA) 
into law2 in 1976, whereas the European Union 
adopted the Restriction of Hazardous Substances 
Directive3 in 2003, which became law in all 
member states in 2006. In addition to costs and 
societal impact, however, toxicity and safety limit 
the benefit of using chemicals, in particular 
therapeutics, by significantly lowering the 
cost/benefit ratio for certain sub-populations that 
tolerate exposure to a given chemical (or therapy), 
and by limiting the amount (or dose) such that the 
most useful amount/dose and thereby maximal 
effect are not reached. Lowering toxicity impact 
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and thus maximizing the cost/benefit ratio are an 
essential goal in chemical research.  

Computational toxicology4 is a growing field in 
the area of computational molecular sciences that 
is poised to gain significance and impact due to 
several European and US initiatives. These include 
for example the REACh (Registration, Evaluation, 
Authorization and Restriction of Chemicals) 
regulation5 implemented in the EU in 2007, part of 
this initiative being to create community and 
expert driven computational models of toxicity in 
the context of OpenTox online community.6  
Tox21 program7 in the US has similar goals  
and aims at identification of better toxicity 
assessment methodology both experimental and 
computational.  
 One of the key objectives of in silico toxicology 
assessment is the prioritization of chemicals for 
toxicity evaluation, thus reducing the experimental 
burden and the need to evaluate compounds in 
animal models. This is often accomplished by 
highlighting chemical substructures, or structural 
alerts8, which are associated with harmful effects. 
Several categories of chemicals are flagged in this 
manner by means of expert systems such as 
DEREK Nexus9 and machine learning or QSAR, 
Quantitative Structure-Activity Relationships.10,11 
Many computational toxicology tools are now 
freely available on the internet.12 
 Here, we explore the possibility of adding 
primary high throughput screening (HTS) 
endpoints as biological descriptors, to complement 
the molecular descriptors derived from chemical 
structures. The combination of biological and 
chemical descriptors was performed on the median 
lethal dose following oral administration in rats 
(henceforth termed rat LD50). Since LD50 
measures the lethal effect of the exposed chemical 
on a given population, in this case rats, this 
particular endpoint is used to evaluate acute 
toxicity. LD50 values are usually expressed in 
mg/kg; lower values indicate high toxicity, while 
higher values are observed for less harmful 
substances.13 Our hypothesis is that, by combining 
biological and chemical descriptors, one could 
develop enhanced, more predictive, QSAR models. 
Despite the limitations of rat oral LD50 as an 
endpoint, one that has since been abandoned due to 
its mechanisticy complexity, we hereby illustrate 
the power of the joint descriptor system using NIH 
Roadmap endpoints, combined with structural 
alerts. 

MATERIALS AND METHODS 

Compound selection: The Hazardous Substances 
Data Bank (HSDB)14 was leased from the National 
Library of Medicine in XML format and converted 
to tabular format. CAS identifiers from HSDB 
records were used to lookup chemical structures 
from PubChem and NCI Chemical Structure 
Lookup Service using the web services public API. 
As in vivo toxicity data, only LD50 rat oral data 
were used from the HSDB dataset, where manual 
curation was done to convert all dose values to 
mg/kg units. All toxicity values were converted to 
logarithm of dose values for QSAR models. A set 
of 428 unique compounds having one or more 
measured experimental rat LD50 values was 
initially selected. The following procedure was 
used: the fixed values of oral LD50, were included 
twice in the training set; for experimental LD50 
values reported as an interval, both the minimum 
and maximum values were included; and for cases 
where LD50 values were reported as larger than a 
specific value the threshold value was included, 
respectively. 

Biological descriptor assembly and curation: 
All molecules from the oral rat LD50 set were 
subject to automated queries in PubChem Assays. 
The query was limited to primary screens from the 
Molecular Libraries Initiative (MLI),15 where each 
screen had to originate from MLI, and where at 
least 20,000 chemicals were evaluated (HTS 
screens only). All molecules were mapped to the 
Molecular Libraries-Small Molecules Repository 
(MLSMR) library using BABEL2 (Openeye)16,17 
generated canonical SMILES. The HTS screening 
results (active/inactive) for those substances were 
retrieved for 822 MLI assays. Physico-chemical 
profiling assays (solubility, aggregation, 
fluorescence, etc) were excluded.  

Chemical descriptor assembly: Circular ECFP 
fragment fingerprints18 of radius 2-10 were 
generated for the selected substances and used as 
chemical descriptors, using an in-house 
implementation of ECFP. JChem library19 was 
used for parsing chemical structures input.  

Statistics: All multivariate modelling of the 
LD50 were performed by PLS20 (projection to 
latent structures) using the Simca package.21 The 
estimation of principal component significance 
was performed by the cross-validation (CV) 
procedure22 and reported as Q2. Overfit was 
investigated by perturbation of the response values 
and the related loss of Q2. Model predictivity was 
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estimated using an independent test set: Starting 
from 265 LD50 values (for 223 approved drugs) 
extracted from the Wombat PK database,23 all 
duplicates (present in the training set) were 
removed. A total of 102 unique drugs associated 
with 122 oral rat LD50 values were retained as a 
completely independent external set, i.e., not used 
to evaluate the QSAR model. This test set was 
submitted to the same biologic and chemical 
descriptor evaluation, and used to evaluate model 
predictivity.  

RESULTS 

 The initial set of 428 unique molecules resulted 
in 1155 objects, due to processing of LD50 values, 
as outlined earlier, and were used as training set for 
multivariate modeling. The initial PLS model, 
based on a combination of biological and chemical 
descriptors, had 6 latent variables (see Table 1).  

This PLS models was analyzed in terms of the 
variable importance contribution (VIP) for each of 
the starting descriptors. This comparison helps to 
eliminate those descriptors that did not relate to oral 
rat LD50, and to focus on those descriptors that 
consistently contribute to the PLS model. Only 
descriptors having a VIP value above 0.8 are 
discussed in this paper, and included in the “best” 
models. The sequential descriptor elimination process 
via the VIP criterion reverted to previous models if 
the new dataset resulted in a loss of too many objects 
(over 25%) due to zero columns, or if the model 
resulted in a significant Q2 drop following cross-
validation. Descriptors that had VIP above 1.0 (this 
being deemed as highly important) are highlighted 
below. For comparative purposes, models based on 
chemical or biological descriptors only, are also 
reported in Table 1. The loss in objects and 
descriptors is either due to VIP selection, or to the 
complete loss of descriptors per row. 

The comparative study that is summarized in 
Table 1 suggests that the “hybrid” model, that is 
the model based on a combination of chemical and 

biological descriptors, is superior to models based 
on chemical or biological description alone. When 
used separately, biological descriptors result in a 
PLS model with lower statistical significance, 
compared to those based on chemical description. 
However, the “best” model appears to be the 
hybrid one, based on CV-derived Q2. The 
significance of the Hybrid Model (score plot in 
Fig. 1, top) was investigated by redoing the 
regression with scrambled Y data. The procedure 
shows a complete loss of explained variance, as 
measured by Q2, with the degree of correlation 
between the true response vector and the perturbed 
vector (Fig. 1, bottom). Thus, we can safely state 
that the PLS model used to model rat LD50 after 
oral exposure is highly significant.  

We further investigated the relationship 
between the test set and the training set, as 
measured by the overlap in the score plot between 
objects present in the training set (Fig. 2, light 
gray) and test set (Fig. 2, black). This plot suggests 
that chemicals predicted in our model are within 
the applicability domain, and therefore estimates of 
model predictivity are reliable. 

DISCUSSIONS 

Although toxicity endpoints are successfully 
used to build QSAR models that pass statistical 
criteria, these models are likely to require temporal 
updates, as illustrated by developing a global 
model for cardiac toxicity mediated by the hERG 
potassium channel.24  This illustrates not only the 
need to periodically re-evaluate a model’s 
applicability domain,25 but further highlights the 
inherent limitations of model predictivity for novel 
chemical structures. One possible approach in 
addressing this limitation, inherent to all QSAR 
models, is to introduce descriptors that are less (or 
not at all) dependent on chemical structures. Here, 
we explored the use of primary HTS data as 
biological descriptors, in combination with 
chemical descriptors, to model LD50 data.   

 
Table 1 

Comparative summary and overview of the statistical models 

No. Type R2Y Q2Y A Observations & Variables 
1 Initial Model 0.684 0.483 6 1155 objects; 499 bio and 548 chem descriptors 
2 Hybrid Model 0.668 0.565 7 899 objects; 205 bio and 181 chem descriptors 
3 Chemistry-based Model 0.49 0.406 7 1155 objects; 181 chem descriptors 
4 Bioactivity-based Model 0.376 0.267 5 603 objects; 106 bio descriptors 

* “Objects” refers to the entries in the multivariate model, which are not the same as unique molecules (see Materials and Methods). 
“A” refers to the number of latent variables.  
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Fig. 1 – Three-dimensional scatter plot of the Hybrid PLS Model (top). Some of the compounds from the training set are highlighted 

for comparative purposes. PLS model validation using Y – scrambling (bottom). 
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Fig. 2 – PLS model applicability domain: Compounds included in the test set (black)  
are well within the domain representation for the training set (light grey). 

  
A previous report used cellular toxicity 

endpoints from the Molecular Libraries Initiative 
as HTS descriptors which, in combination with 
molecular descriptors, were used to model rat 
LD50 data by Tropsha and collaborators.26 
Although the model published by Tropsha et al. 
uses a similar approach, that of combining 
chemical descriptors and qHTS in manner similar 
to the work described here, there are several 
differences between the two approaches: i) In this 
study, all HTS assays (>20000) published in 
PubChem run on MLSMR library were used; ii) 
All processed data from HSDB were included in 
the training set, not just min/max values; iii) Our 
chemical descriptors are molecular patterns and 
can be used as structural alerts.  

The main advantages brought by these 
differences are discussed below.  

i) It is possible to formulate hypotheses 
concerning the compound’s mechanism of toxicity. 

Using all available (fitting our selection criteria) 
HTS data from PubChem provided additional 
insights into mechanism of toxicity (Table 2). 
Compounds active in multiple assays with 
unrelated targets indicate a pattern of non-specific 
or promiscuous binders most likely through 
covalent binding to proteins like in the case of 
organomercury compounds which are likely to 
bind to cysteine residues. On the other hand 
activities in one assay or assay with related or 
identical targets indicates a more specific 
mechanism of toxicity for example oxymetazoline 
is active only on HTR2A receptor, and literature 
data indicate that it is also active on other GPCR 
class A/amine subclass receptors suggesting that 
toxicity is related to GPCR activities. 
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Table 2 

HTS descriptors and mechanism of toxicity 

Chemicals PubChem assay target(s) Mechanism of toxicity explained by HTS 
descriptors 

Oxymetazoline 5-HT2A GPCR class A/amine 

Organophosphoric 
pesticides/insecticides >250 covalent binders, important target 

acetylcholinesterase 

Cycloheximide ~65 non specific protein synthesis inhibitor 
Thimerosal (organomercury) 

 ~50 non specific; protein covalent binder 

Pyriminil, Verapamil mitochondrial permeability transition pore 
(regulates ion passage like ion channels) Interference with mitochondrial function 

 

 
Scheme 1 – Molecular fragments associated with lower acute toxicity, dashed bonds indicate presence of aromatic ring.  

Molecular fragments are depicted along with SMARTS patterns. 
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Scheme 2 – Molecular fragments associated with higher acute toxicity, dashed bonds indicate presence of aromatic ring.  

Molecular fragments are depicted along with SMARTS patterns. 
 

ii) The model proposed here is more general 
and has a higher applicability domain, and is less 
biased towards structures with “marginal” toxicity. 
For example, there are 48 chemical structures with 
marginal toxicity in our validation set that would 
fall outside the applicability domain of previously 
published QSARs. 

iii) Structural alerts list can be used directly by 
other investigators, even if PubChem data were not 
available. By identifying the structural patterns 
from chemical descriptors (ECFP fingerprints) 
which have the largest contribution to 
decreasing/increasing of the acute toxicity value it 
is possible to classify molecular fragments that 
implicitly cause the decreasing or increasing of 
LD50 values (Schemes 1 and 2). For example, 

molecular fragments found to contribute to the 
lowering of toxicity are usually alcohols, sugars or 
ethers (Scheme 1), which are generally accepted to 
be safe. On the contrary, amines, phosphorus 
derivatives or halogen-containing compounds 
(Scheme 2) are as associated with chemicals that 
may be toxic. 

CONCLUSIONS 

 A PLS model with high significance and good 
predictivity was generated to estimate the acute 
oral toxicity in rats. The model uses a combination 
of chemical and biological descriptors, and is 
statistical more powerful than the model generated 
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based on chemical descriptors only. Biological 
data alone (HTS data) did not offer sufficient 
information to obtain a PLS model with 
satisfactory statistical significance. Chemical 
descriptors expressed as circular ECFP fingerprints 
help identify molecular fragments that are likely to 
be associated with increased, or decreased oral rat 
LD50 values, respectively. Also, we illustrated 
how biologic descriptors can assist in developing 
novel mechanistic insights into complex 
toxicological endpoints such as LD50. Despite 
inherent limitations (e.g., lack of predictivity for 
novel chemicals due to the termination of the 
Molecular Libraries Program), the methodology 
described here can be extended to novel endpoints, 
as well as novel chemical libraries, provided that 
biomolecular screening is used as supplement to 
informatics-based systems. 
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