
 

 

ACADEMIA ROMÂNĂ 

Revue Roumaine de Chimie 

http://web.icf.ro/rrch/ 

 
Rev. Roum. Chim., 
2017, 62(1), 49-56 

 
 

 

ELECTROCHEMICAL AND META-MODELLING ANALYSIS  
OF THE INHIBITING EFFECT EXERTED BY SULFURIC ACID DIAMIDE  

ON BRONZE CORROSION 

Julieta D. CHELARU,* Călin I. ANGHEL, Maria GAVRILOAE and Liana M. MUREŞAN 

Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, University Babes-Bolyai,  
11 Arany Janos Street, RO 400028 Cluj-Napoca, ROUMANIA  

Received July 26, 2016 

The bronze monuments exposed outdoors suffer atmospheric 
corrosion and depreciation because of pollution. Therefore, it is 
important to find efficient methods to protect them against 
corrosion. Due to the toxicity of commonly used corrosion 
inhibitors and the ever tightening environmental norms 
surrounding their use and disposal, there is great interest in 
replacing harmful inhibitors with effective non-toxic 
alternatives. In this context, the main aim of this paper is to 
investigate the protective effect of sulfuric acid diamide (SAD) 
at different concentrations on bronze corrosion. The inhibiting 
effect of the SAD on corrosion of bronze CuSn8 was 
investigated by electrochemical method, in a 0.2 g L-1 Na2SO4 + 
0.2 g L-1 NaHCO3 (pH=5) solution simulating acid rain. To 
extend the domain of inhibiting conditions and to reduce 
experimental measurements, correlated predictions of parameters 
based on experimental values was implemented in the paper 
using two methods of meta-modelling techniques. 
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INTRODUCTION* 

One of the most important methods in the 
protection of bronze against corrosion is the use of 
organic inhibitors.1 Therefore, in the last decades, a 
series of organic compounds, in particular 
heterocyclic compounds with nitrogen, sulfur and 
oxygen were tested as corrosion inhibitors for 
bronze.2,3 They can act as effective inhibitors for 
bronze due to their ability to form protective films 
on the metal surface through different mechanisms 
involving physical adsorption, chemisorption, or 
polymerization. Among these, benzotriazole and 
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its derivatives have been shown to be most 
effective, but their high toxicity causes major 
concerns.4 Recently, extensive research have led to 
the discovery of new classes of corrosion 
inhibitors, and the importance of the use of several 
drugs as corrosion inhibitors has increased.5,6 Due 
to their availability on the market, relatively low 
toxicity and chemical composition, the drugs 
appear to be promising substitutes for toxic 
inhibitors.5 The inhibiting action of these 
compounds is due to their interaction with the 
metallic surface by adsorption. Polar functional 
groups stabilize the adsorption process. In general, 
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the adsorption of the inhibitor on the metal surface 
depends on its nature, manner of adsorption, 
chemical structure and on the type of electrolyte 
solution.7 

In this context this paper presents a study 
regarding the bronze corrosion in the presence of a 
drug from sulfonamides class, namely sulfuric acid 
diamide (SAD, also known as sulfamide). 
Sulfonamides represent an important class of 
active medicinal compounds, which are used on a 
large scale as antibacterial agents. Aiming to 
investigate the inhibiting properties of SAD in the 
corrosion process of bronze, electrochemical 
experiments were carried out in a 0.2 g L-1 Na2SO4 
+ 0.2 g L-1 NaHCO3 (pH = 5) solution simulating 
acid rain in its presence. 

On the other hand, to reduce the number of 
laboratory experiments, the time and costs of 
researches, the paper implements into a 
comparatively manner two methods of meta-
modelling based on artificial intelligence 
techniques. A meta-modelling procedure involves 
at least the following steps: (a) choosing an 
experimental design for generating experimental 
data, (b) choosing a model to represent the data, 
and then (c) fitting the model to the observed data. 
Meta-models rely on input-output mapping to 
describe the unknown relation between values of 
input and output or response variables of the 
process. A meta-model replaces a true functional 
relationship ℜℜng :  and know values  
yi = g(xi) at selected input variables usually called 
sampling points (X = {x1, . . . , xm}, X∈ℜn), by an 
empirical mathematical expression ( )g x  that is 
much easier to evaluate. Thus surrogates  
of the objectives and constraint functions can 
replace the original functional relationship 

( ) ( ) ( )gg x x xε= + . Based on input-output pairs 
of values and simulation runs, parameters of the 
model are fit to approximate the original data in a 
best possible way. The present work implements 
two empirical meta-modelling procedures, 

basically two-class classifiers: (1) a well known 
support vector machine approach and (2) a 
minimax decision procedure based on minimax 
probability machine regression approach. Both 
procedures are inductive learning procedure, 
learning from a given set of training/examples, 
verifying on test/ examples to induces 
rules/predictions from these. These procedures are 
used to predict trends of electrochemical 
parameters regarding bronze corrosion process 
using a reasonable-small numbers of experiments 
and experimental data. Support vector machine 
based on statistical learning theory was introduced 
by Vapnik in 1995, developed and studied by 
many others.9 Minimax decision procedure based 
on minimax probability approach were introduced 
and presented in detail elsewhere.10,11 The 
foundation of this decision procedures are based on 
minimax probability machine for binary 
classifcation and minimax probability machine 
regression presented and developed after 2002.12,13 

RESULTS AND DISCUSSION 

1. Potentiodynamic polarization measurements 

The experiments started with measuring the 
potential of the working electrode in open circuit 
for 1 hour, in the absence and in the presence of 
different concentrations of inhibitor. To determine 
the polarization resistance of the electrodes, linear 
polarization curves were recorded, in the potential 
domain of ± 20 mV vs. the value of the open 
circuit potential (OCP). The polarization resistance 
values for each electrode, calculated as the inverse 
of the slope of each curve, are shown in Table 1. 

To determine the kinetic parameters of the 
corrosion process, polarization curves were 
recorded in the potential range of ± 200 mV vs. 
OCP, some results are shown in Fig. 1. 

 

 
Table 1 

Corrosion process parameters for the examined samples in Na2SO4 / NaHCO3 (pH 5) solution obtained in the absence and in the 
presence of various concentrations of inhibitor 

η [%] 
C [mM] icor 

[µA/cm2] 
Rp 

[kΩ·cm2] 
icor Rp 

0 1.46 9.05 - - 
0.5 0.41 48.30 72 81 
1 0.16 176.00 89 95 
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Table 1 (continued) 

1.5 0.27 40.49 81 78 
2 0.39 44.85 73 80 
3 0.48 41.36 67 78 
4 0.46 50.68 62 82 
5 0.39 41.29 73 78 
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Fig. 1 – The polarization curves (± 200 mV vs. OCP) for the studied electrodes immersed in 0.2 g L-1 Na2SO4 + 0.2 g L-1 NaHCO3 

(pH 5) at different concentrations of SAD. 
 

As shown in Table 1, the sulfuric diamide exerts a 
protective effect against bronze corrosion at all 
investigated concentrations. The best results were 
noticed at 1 mM SAD, this is suggested by the high 
value of the polarization resistance (Rp=176.00 
[kΩcm2]) and the low value of the corrosion current 
density (icorr= 0.16 [µA cm-2]). It can be assumed that 
the beneficial action of the organic compound is due 
to S and N heteroatoms from its molecules 
determining its adsorption on the bronze surface. 
Based on the corrosion current density the protection 
conferred by inhibitor at all concentrations used was 
determined according to the relation: 

100[%] 0

0

x
i

ii

corr

corrcorr −
=η  (1), where i0

corr and icorr 

are the values of the corrosion current densities in 
absence and in presence of the inhibitor at different 
concentrations, respectively. The results are 
presented in Table 1 and confirm that the highest 
efficiency was reached in the case of 1mM SAD. 
In order to validate these findings many sets of 
polarization curves in the presence of different 
inhibitor concentrations were recorded. All these 
electrochemical corrosion measurements were 

included in the database necessary to the meta - 
modelling methods mentioned before. 

2. SEM-EDX analysis 

In order to establish if the SAD is adsorbed on 
bronze, the surface morphology and the composition 
of the corrosion products covering the electrode was 
examined by SEM and EDX. Fig. 2 presents the 
bronze surface morphology after 72 h of immersion 
in the corrosion solution in the absence and in the 
presence of 1mM (SAD). As expected, in the absence 
of the inhibitor, the bronze surface appears to be 
completely covered with a layer of corrosion 
products. It can be observed that in the presence of 
SAD the layer of corrosion products is less 
continuous and thinner than in its absence, presenting 
small regions of uncovered bronze substrate. On the 
other hand, the EDX analysis on the bronze surface 
indicated the presence of S in a larger quantity when 
1 mM SAD was used (6.01 %) as in the absence of 
inhibitor S (0.71 %). These results can be explained 
by the adsorption of the inhibitor on the bronze 
surface. 
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Fig. 2 – SEM / EDX of bronze surface after 72 h immersion in 0.2 g L-1 Na2SO4 + 0.2 g L-1 NaHCO3 (pH 5) in the absence (a);  
and in the presence 1mM SAD (b). 

 
3. Adsorption isotherm 

The polarization resistance values determined 
from linear polarization curves (Rp=1/slope), 
recorded in the potential domain of ± 20 mV vs. 
the value of the OCP, were used to calculated the 
degree of surface coverage (θ) with inhibitor 
molecules and the inhibition efficiency (η), 
according to the following equations: 

p

pp

R
RR 0−

=θ  (2); η [%] = θ x 100 (3); where Rp 

and Rp
0 are the polarization resistances in 

electrolytes with and without inhibitor at different 
concentrations, respectively. The results are shown 
in Table 1. From Fig. 3 it can be seen that the plot 

of 
θ
C  versus C  results in a straight line with 

nearly unit slope (1.14), confirming that the 
adsorption of SAD on bronze obeys Langmuir 

isotherm: C
K

C
+=

1
θ

 (4) where K is the 

adsorption equilibrium constant and C is the 
inhibitor concentration. Based on K value deduced 
from the Langmuir adsorption isotherm the 
standard free energy of adsorption 0

adsGΔ   
was calculated with following equation:  

0
adsGΔ = -RT·ln(55.5K) (5), where 55.5 represents 

the molar concentration of water in solution (mol 
L-3), R is the gas constant and T is  
the thermodynamic temperature. In this way,  
for K= 1.21·104 [M-1] was obtained  

0
adsGΔ = -14.24[kJ mol-1]. The negative value of 
0
adsGΔ indicate spontaneous adsorption of the 

inhibitor molecule on the bronze surface.14 

4. Implementation  
of the meta-modelling procedures 

Because both implemented procedures are 
inductive learning procedure, to ensure a good 
distribution of the data and stability the simulations 
was based on data randomly divided into a number 
of distinct learning and testing subsets. There are 
no uniquely agreed approaches to choose the 
suitable dimension of learn and test subsets, but is 
commonly agreed that the training data must be 
sufficiently large compared with the number of 
features (variables). In every random cycle of 
simulation, a random percentage of the database 
(10–30%) is set aside and used in testing step (trial 
and errors). The procedures were conducted in a 
crude manner, without outliers’ detection and no 

a b 
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features reduction or selection. The 
implementation of support vector machines is 
based on free version of LS - SVMlab version 1.5. 
The implementation of minimax decision 
procedure was developed as a user-friendly 
computer application also in MATLAB software 
environment. The main goal of implementations is 
to establish the most suited inhibitor concentration 
to achieve the best protection against corrosion. 
This objective is highlighted by the highest values 

of Rp. Prediction of Rp was modelled as a function 
of 5 input variables: the C, icorr, Ecorr, βc, βa, and Rp. 
The database with 40 sample sets of 
electrochemical measured parameters-input 
parameters was derived from the polarization 
curves at different values of inhibitor concentration 
(Table 2). Symbolic function of prediction for 
polarization resistance Rp was represented as, Rp = 
f(C, Ecorr, βc, βa, icorr). 
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Fig. 3 – Langmuir isotherm for adsorption of SAD on bronze surface. 

 
Table 2 

Statistical parameters of extended database of electrochemical measurements 

Parameters C 
[mM] 

Ecorr 
[mV] 

βc 
[mV dec-1] 

βa 
[mV dec-1] 

icorr 
[μA cm-2] 

Rp 
[kΩ∗cm2] 

Range 0 ÷ 5 -158.11 ÷41.8 74.63 ÷ 358.04 83.59 ÷ 406.10 0.10÷1.48 7.29÷205.77 
Mean value 1.715 -16.487 169.16 205.54 0.547 64.842 
Standard deviation 1.767 60.509 70.062 89.141 0.446 50.102 

 
Table 3 

Partial results and some conditions of simulations for the best meta-model 

 Minimax decision procedure Support vector machines 
(LS-SVMlab version 1.5) 

Range of relative errors on all test data subsets -3.868 ÷ 12.281 [%]  -22.106 ÷ 64.283 [%] 
 

Range of relative errors on the best data test 
subset 

-4.667 ÷ 3.99 ∗10-11[%] based on Fig. 7a -4.838 ÷ 32.523 [%] based on Fig. 7b 

Kernel functions                                
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−= 22

2
σjiexp)j,i(K xxxx

 

Possible domain of polarisation resistance Rp≥ 
200 kΩ∗cm2 

200 ÷ 240 200 ÷ 245 

Possible domain of inhibitor concentration 
C[mM] 

0.85 ÷ 1.15 0.85 ÷ 1.15 

Possible domain of variation validate and extend experimental conclusions ensuring also reasonable consumption and cost-
effectively performance of protection at corrosion. 
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To be comparable, both procedures are forced 
to work in multiple cyclic steps on identical data 
sets. The error will be estimated by testing rather 
than by calculation. The performance of 
procedures was investigated based on the 
following criteria: (i) simple equivalent linear 
regression between the predicted and the 
corresponding targets: btestYapredictedY +⋅=  

(6); where Y represents predicted or test values 
and a and b the slope and intercept of the 
equivalent linear regression model, respectively. 
Theoretically better predictions, means b index 
close to zero value and a index close to unity. (ii) 
relative error between the predicted and the 
corresponding test targets: 

[%]100×
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

predictedY
testYpredictedY

RE  (7). 

Main conditions of simulations and partial results 
are done in Table 3. Performing the predictions in 
both procedures a kernel type as an exponential 
radial basis function with standard width kernel 

(σ) tuned using 10 - fold cross validation (Table 
3) was proved to work well. The model that 
performs the best on predictions over cyclic 
simulations, according (eqs.6 - 7), was defined as 
the surrogate model. This best surrogate model in 
both procedures will be used to assess new 
predictions. Numerical applications addressed the 
following main tasks: (1) predictions of Rp as a 
control parameter for the effective protection at 
corrosion at different C and (2) assessments of a 
possible domain of Rp as a function of C and icorr. 
The performance of both implemented procedures 
is closed (Fig. 6 and Table 3). Regarding simple 
equivalent linear regression between the predicted 
and the corresponding Rp (eq. 6, Table 3 and  
Fig. 4) the differences are minors. Some 
important differences are revealed concerning 
relative error between the predicted and the 
corresponding test targets (eq. 7, Table 3 and Fig. 
5). The results of minimax decision procedure are 
a little better than those obtained by 
implementation of support vector machines. 
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Fig. 4 – Linear dependencies in the best models between predicted and experimental values for Rp: minimax decision procedure (a), 
support vector machines (b). 
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Fig. 5 – Relative errors in the best models between predicted and measured Rp: minimax decision procedure (a);  
support vector machines (b). 
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Fig. 6 – Predicted quantitatively interactions between predicted Rp, C and icorr in the best models: for minimax decision procedure 

(a), for support vector machines (b). 
 

Good correlation between numerical 
simulations and experimental values related to Rp 
reveal the capacity of these meta-modelling 
procedures. According with this good correlation 
we extend the predictions as correlated variation of 
the Rp with C and icorr. From these predictions  
(Fig. 6), one can see much better the influence of 
these parameters on the effective protection at 
corrosion. Instead a point value for C implicitly a 
single experimental value of Rp, results a domain 
with more possible values for C which can assure a 
good protection at corrosion. This domains was 

stated by values greater than 176 [kΩcm2] obtained 
from unique experimental measurements around C 
= 1 mM (Table 1). The results related to the 
highest values of Rp confirm the best protection at 
corrosion previously established into a singular 
experiment. The accurate results offer a potential 
domain of values for the C (Table 3). Based on 
these extended experimental conclusions it is 
possible to reduce the number of detailed 
laboratory experiments. This fact can ensure 
reasonable consumptions of C, relative small 
number of laboratory experiments and generally a 
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cost-effectively performance of protection at 
corrosion. 

EXPERIMENTAL 

To conduct the electrochemical studies, a contemporary 
bronze CuSn8 was selected with the following chemical 
composition: 90.18 % Cu, 8 % Sn, 0.8 % Zn, 1 % Pb and 0.02 
% Al. The working electrodes made by cylindrically shaped, 
were placed in a PVC tube (exposed area = 2.00 cm2), while 
the sealing was assured with epoxy resin. For electrical 
contact, a metal rod was attached. The inhibitor used in the 
experiments was a non - toxic sulfonamide derivative, namely 
sulfuric acid diamide (H2NSO2NH2). The inhibitor was 
dissolved in the corrosive solution at different concentrations 
respectively: 0.5 mM L-1, 1mM L-1, 1.5 mM L-1, 2 mM L-1,  
3 mM L-1, 4 mM L-1 and 5 mM L-1. The electrolyte solution 
for corrosion measurements was 0.2 g L-1 Na2SO4 + 0.2 g L-1 
NaHCO3 acidified to pH = 5 by the addition of a dilute 
sulfuric acid at room temperature. 

The electrochemical corrosion measurements were 
performed on a PC - controlled electrochemical analyser 
AUTOLAB - PGSTAT 10 using a three electrodes cell 
containing a working electrode (bronze), an Ag / AgCl 
electrode as reference electrode and a platinum counter 
electrode. Polarization curves were recorded in a potential 
range of ± 20 mV (for Rp determination) and of ± 200 mV vs. 
the value of the open circuit potential (for Tafel 
interpretation), with a scan rate of 10 mV / min, after 1 hour 
immersion in the corrosive solution.  

The morphology of corrosion products layer formed on 
the electrodes surface was examined with a scanning electron 
microscope (SEM; Scanning Jeol JEM5510LV) coupled with 
Oxford Instruments EDX Analysis System Inca 300 at 15kV 
and spot size 39 μm. 

CONCLUSIONS 

Electrochemical investigations revealed that 
sulfuric acid diamide exerts a good protective 
effect against bronze corrosion immersed in 
Na2SO4 / NaHCO3 (pH 5) solution. The best 
anticorrosive effect was noticed when 1mM 
inhibitor was used. Based on SEM / EDX analysis, 
it can be concluded that the beneficial action of 
 

SAD is due to S atoms from its molecule 
determining its adsorption on the bronze surface. 
Adsorption of sulfuric acid diamide on bronze 
surface obeys Langmuir isotherm. Comparative 
numerical simulations demonstrate the capability 
of the proposed meta modelling approaches to 
reduce the number of laboratory experiments and 
to establish an appropriate experimental policy. 
More or less cumbersome the depicted example 
emphasises the utility of mixed approaches for 
engineers dealing with corrosion. 
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