Supporting Information for

DNA INTERACTION, PHOTOCLEAVAGE AND THEORETICAL CALCULATIONS OF A RUTHENIUM(II) COMPLEX WITH HYDROXYQUINOLINE DERIVATIVE

Yaxuan MI^a, Shuang WANG^a, Minghe WANG^a, Zebao ZHENG^{*b}, Xiaolong ZHAO^{*a}

^aCollege of Chemistry & Environmental Science, Hebei University, Baoding 071002, P.R. China ^bCollege of Chemistry and Chemical Engineering, Taishan University, Taian 271021, P.R. China ^{*}Corresponding author.

E-mail: longlong_666@sina.com (X.L. Zhao); zhengzebao@163.com (Z.B. Zheng)

Scheme S1. The synthetic route to [Ru(bpy)₂(ipq)](ClO₄)₂.

The characterization of the complex $[Ru(bpy)_2(ipq)](ClO_4)_2$: ¹H NMR (δ_H , ppm, 400 MHz, DMSO- d_6): 14.50 (s, 1H, N–H), 9.85 (s, 1H, O–H), 9.05–9.10 (d–d, J = 7.2 Hz, 2H, H_c), 8.85–8.91 (d–d, J = 8.0 Hz, 4H, H_{3,3'}), 8.61 (d, J = 8.2 Hz, 1H, H_e), 8.53 (d, J = 8.2 Hz, 1H, H_d), 8.22–8.26 (m, 2H, H₄·), 8.11–8.15 (m, 4H, H_{4, a}), 7.89–7.99 (m, 2H, H_b), 7.86 (d, J = 5.6 Hz, 2H, H₆·), 7.54–7.66 (m, 6H, H_{6,5',f,g}), 7.36–7.40 (m, 2H, H₅), 7.26–7.28 (d–d, J = 6.0 Hz, 1H, H_h). ¹³C NMR (125 MHz, DMSO- d_6 , δ , ppm): 157.24, 157.02, 153.43, 152.49, 152.00, 151.84, 145.50, 138.46, 138.32, 137.85, 130.97, 129.16, 128.35, 124.93, 119.30, 118.42, and 112.01.

Fig. S1 – Changes in absorption spectra of ruthenium complex (5.43 μ M) upon successive additions of the DNA in Tris-HCl buffer with NaCl concentration of 0.025 M.

Fig. S2 – Changes in absorption spectra of ruthenium complex (5.43 μ M) upon successive additions of the DNA in Tris-HCl buffer with NaCl concentration of 0.075 M.

Fig. S3 – Changes in absorption spectra of ruthenium complex (5.43 μ M) upon successive additions of the DNA in Tris-HCl buffer with NaCl concentration of 0.100 M.