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Graph theory has much advancement in the field of 
mathematical chemistry. Nowadays, chemical graph 
theory has become very popular among researchers 
because of its wide applications in mathematical 
chemistry. The molecular topological descriptors 
are the numerical in- variants of a molecular graph 
and are very useful for predicting their bioactivity. 
A great variety of such indices are studied and used 
in theoretical chemistry, pharmaceutical researchers, in drugs and in different other fields. In this article, we study the chemical graph 
of Chain Octahedron structure and compute the Total Eccentricity, Average Eccentricity, Atom bond connectivity index and 
Geometric arithmetic index of Chain Silicate. Furthermore, we give analytically closed formulas of these indices which are helpful in 
studying the underlying topologies. 
 

 
 

INTRODUCTION* 

Cheminformatics is new subject which is a 
combination of chemistry, mathematics and 
information science. There is a considerable usage 
of graph theory in chemistry. Chemical graph theory 
is the topology branch of mathematical chemistry 
which implements graph theory to mathematical 
modeling of chemical occurrence. There is lot of 
research which is done in this area in the last few 
decades see details.1–5 This theory contributes a 
major role in the field of chemical sciences. Some 
references are given, which hopefully demonstrate 
the importance of this field.6,7,10–12,14,17–19 Let G = (V, 
E) be a graph, where V is a non-empty set of 
vertices and E is a set of edges. The chemical graph 
theory applies graph theory to mathematical 

                                                            
 

modeling of molecular phenomena, which is helpful 
for the study of molecular structure. This theory 
contributes a prominent role in the field of chemical 
sciences. Chemical compounds have a variety of 
applications in chemical graph theory, drug design, 
etc. The manipulation and examination of chemical 
structural information is made conceivable by using 
molecular descriptors. A great variety of topological 
indices are studied and used in theoretical 
chemistry, pharmaceutical researchers. In chemical 
graph theory, there are many topological indices for 
a connected graph, which are helpful in study of 
chemical molecules. Development of chemical 
science had an important effect by this theory. 

If p, q ∈ V (G), then the distance d(p, q) 
between p and q is defined as the length of any 
shortest path in G connecting p and q. Eccentricity 
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is the distance of vertex u from the farthest vertex 
in G. In mathematical form, 

 ( ){ }( ) max , , ( )u d u v v V Gε = ∀ ∈   (1) 

The eccentric connectivity polynomial of a graph 
G is defined1,2 As we know that the first derivative 
of ECP (G, x) evaluated at x = 1 is called the 
eccentric connectivity index. 
On the other hand, the eccentric connectivity index 
of the molecular graph G in 1997 is introduced 
by:22  

 .  (2) 

where ε(v) is the maximum distance between v and 
any other vertex u of G. The Total-eccentricity 
index is introduced by Farooq et al.,4 which is 
defined as, 

   (3) 

where ε(v) represents eccentricity of vertex . 
The Total-eccentricity index is introduced by 
Farooq et al.,4 which is defined as, 

  
(4)

 
The average eccentricity avec(G) of a graph G is 
the mean value of eccentricities of all vertices of a 
graph, that is, 

    (5)  
The eccentricity based geometric-arithmetic index 
of a graph G is defined as,8  

  
(6)

 
A new version of ABC index is introduced by 
Farahani20 which is defined as, 

  
(7) 

 
Recently the eccentric atom-bond connectivity 

index of linear polycene parallelogram benzenoid 
is intro. The average eccentricity and standard 
deviation for all Sierpiński graphs Sn is established 
by.16 The extremal properties of the average 
eccentricity, conjectures and AutoGraphiX, about 

the average eccen- tricity are obtained by.13 The 
bounds on the mean eccentricity of graph and also 
the change in mean eccentricity when a graph is 
replaced by a subgraph is established by.3 For trees 
with fixed diameter, fixed matching number and 
fixed number of pendent vertices, the lower and 
upper bounds of average eccentricity are found 
by.23–33  

RESULTS AND DISCUSSION 

In this section, we discuss the chain Octahedron 
structure and give close formulae of certain 
topological indices for this network. Here we find 
the analytically closed results of eccentric 
connectivity polynomial, eccentric connectivity 
index, total eccentricity index, average eccentricity 
index, eccentricity based geo- metric arithmetic 
and atom bond connectivity indices for chain 
Octahedron structure. 

An octahedron graph shown in Fig. 1, is a 
polyhedral graph corresponding to the skeleton of 
a Platonic solid. This Platonic graph consists of 6 
vertices and 12 edges. The analogs of this structure 
play a vital role in the fields of reticular chemistry, 
which deals with the synthesis and properties of 
metal-organic frameworks .15–35 

The different types of octahedral structures 
arise from the ways these octahedra can be 
connected. A chain octahedral structure of 
dimension n denoted as C H On is obtained by 
arranging n octahedra lin- early as shown in Fig. 2. 
The number of vertices and edges of C H On are 
5n + 1 and 12n respectively. We compute the exact 
formulas for the above mentioned topological 
indices of chain octahedral structure as follows. 
 

 
 

Fig. 1 – Structure of an Octahedron. 
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Fig. 2 – Chain Octahedral structure C HO8. 
 

Table 1 

Vertex partition of Chain Octahedron structure for (n-levels) where n is odd,  
based on degree and eccentricity of each vertex with existence of their frequencies 

d(u) ε(u) frequency Range of k and n 

4 k 2 

 
4 k 8 

 
4 k 10  
4 k 2  
8 k 2 

 
 

Table 2 

Vertex partition of Chain Octahedron structure for (n-levels) where n is even,  
based on degree and eccentricity of each vertex with existence of their frequencies 

d(u) ε(u) frequency Range of k and n 

4 k 6 

 
4 k 8 

 
4 k 10  
4 k 2  

8 k 1 

 
8 k 2 

 
 

Table 3 

Vertex partition of Chain Octahedron structure for (n-levels) where n is odd,  
based on eccentricity of each vertex with existence of their frequencies 

ε(u) frequency Range of k and n 

k 4 

 
k 10 

 
k 2  
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Table 4 

Vertex partition of Chain Octahedron structure for (n-levels) where n is even,  
based on eccentricity of each vertex with existence of their frequencies 

ε(u) frequency Range of k and n 

k 1 

 
k 8 

 
k 10 

 
k 2  

 
Table 5 

Edge partition of Chain Octahedron structure for (n-levels) where n is odd,  
based on eccentricity of end vertices with existence of their frequencies 

(ε(u), ε(v)) frequency Range of k and n 

(k, k) 5 

 
(k, k + 1) 14 

 
(k, k) 9 

 
(k, k + 1) 16 

 
(k, k) 8 

 
(k, k + 1) 8  

 
Table 6 

Edge partition of Chain Octahedron structure for (n-levels) where n is even,  
based on eccentricity of end vertices with existence of their frequencies 

 (ε(u), ε(v)) frequency Range of k and n 

(k, k + 1) 8 
 

(k, k) 8 

(k, k + 1) 16 

(k, k + 1) 8  

 
2.1. Eccentric Connectivity Polynomial 

 
Now in the following theorems, we computed 

the eccentric polynomial of chain Octahedron 
structure ECP (CHOn , x). 

 
Theorem 2.1.1. Let CHOn, for all n > 1, 

where n is odd, be the chain Octahedron structure, 
then the eccentric polynomial of CHOn is 
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Proof: Let CHOn, where n is odd, be the chain 
Octahedron structure contains 5n + 1 vertices and 
12n edges. 

The formula of eccentric polynomial is 
 

Using the vertex partition from Table 1, we 
have the following computations 

 

 

 
 

 
 

After an easy simplification, we get 

 
 

Theorem 2.1.2. Let CHOn , for all n ≥ 2, where 
n is even, be the chain Octahedron structure, then 

the eccentric polynomial of C H On is 

 

 
 

Proof. Let CHOn , where n is even, be the 
chain Octahedron structure contains 5n + 1 vertices 
and 12n edges. 

The formula of eccentric polynomial is 
 

Using the vertex partition from Table 2, we 
have the following computations 
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After an easy simplification, we get 
 

 
 

2.2. Eccentric Connectivity Index 
 

Now in the following theorems, we computed 
the eccentric connectivity index of chain 
Octahedron structure ξ(CHOn ). 

Theorem 2.2.1. Let CHOn , for all n > 1, where 
n is odd, be the chain Octahedron structure, then 
the eccentric connectivity index of CHOn is 
 

 

 
 
Proof. Let CHOn , where n is even, be the 

chain Octahedron structure contains 5n+1 vertices 
and 12n edges. 

The formula of eccentric connectivity index is 
 

Using the vertex partition from Table 1, we 
have the following computations 

 

 
 

 
 

 
 

After an easy simplification, we get 
 

 
 

Theorem 2.2.2. Let CHOn , for all n ≥ 2, where 
n is even, be the chain Octahedron structure, then 

the eccentric connectivity index of CHOn is 
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Proof. Let C H On , where n is even, be the 
chain Octahedron structure contains 5n + 1 vertices 
and 12n edges. 

The formula of eccentric connectivity index is 
 

Using the vertex partition from Table 2, we 
have the following computations  

 

 
 

 
 

 
 

After an easy simplification, we get 
 

 
 

2.3. Total Eccentricity Index 
 

Now in the following theorems, we computed 
the total eccentricity index of chain Octahedron 
structure ζ (C H On ). 
 

Theorem 2.3.1. Let C H On , for all n > 1, 
where n is odd, be the chain Octahedron structure, 
then the total eccentricity index ζ of C H On is 

 
Proof. Let CHOn , where n is odd, be the chain 

Octahedron structure contains 5n + 1 vertices and 
12n edges. 

The formula of total eccentricity index is 

 

Using the vertex partitioned from Table 3, we 
have the following computations 

 
 

 
After an easy simplification, we get 

 
 
Theorem 2.3.2. Let C H On , for all n ≥ 2, 

where n is even, be the chain Octahedron structure, 
then the total eccentricity index ζ of C H On is 
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Proof. Let C H On , where n is even, be the 

chain Octahedron structure contains 5n + 1 vertices 
and 12n edges. 

The formula of total eccentricity index is 

 
Using the vertex partitioned from Table 4, we 

have the following computations 

 

 
 

 
 

After an easy simplification, we get 

 
 

2.4. Average Eccentricity Index 
 

In this section we find the average eccentricity 
index of chain Octahedron structure avec(C H On). 

 
Theorem 2.4.1. Let C H On , for all n > 1, where 

n is odd, be the chain Octahedron structure, then the 
average eccentricity index avec(C H On ) is 

 

Proof. Let C H On , where n is odd, be the 
chain Octahedron structure contains 5n + 1 vertices 
and 12n edges. 

The formula of average eccentricity index is 

 
Using the vertex partitioned from Table 3, we 

have the following computations 

 

 
 

 
After an easy simplification, we get 
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Theorem 2.4.2. Let C H On , for all n ≥ 2, 
where n is even, be the chain Octahedron structure, 

then the average eccentricity index avec(C H On ) 
is 

 

 
 

Proof. Let C H On , where n is even, be the 
chain Octahedron structure contains 5n + 1 vertices 
and 12n edges. 

The formula of average eccentricity index is 

 
Using the vertex partitioned from Table 4, we 

have the following computations 
 

 
 

 
After an easy simplification, we get 

 

 
 

2.5. Geometric-arithmetic Index 

In this section we find the eccentricity based 
geometric-arithmetic index of chain Octahedron 
structure GA4 (C H On ). 

Theorem 2.5.1. Let C H On for all n > 1, where 
n is odd, be the chain Octahedron structure, then 
the geometric-arithmetic index GA4 (C H On ) is 

 

 
 

Proof. Let C H On , where n is odd, be the 
chain Octahedron structure contains 5n + 1 vertices 
and 12n edges. 

The general formula of eccentricity based 
geometric arithmetic index is 

 
Using the edge partitioned from Table 5, we 

have the following computations 
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×

 
 

 

 
 

After an easy simplification, we get 
 

 
Theorem 2.5.2. Let C H On for all n ≥ 2, where 

n is even, be the chain Octahedron structure, then 
the geometric-arithmetic index GA4 (C H On ) is 

 

 
 

Proof. Let C H On , where n is even, be the 
chain Octahedron structure contains 5n + 1 vertices 
and 12n edges. 

The general formula of eccentricity based 
geometric arithmetic index is 

 
Using the edge partitioned from Table 6, we 

have the following computations 
 

 

 
 

After an easy simplification, we get 
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2.6. Atom bond Connectivity Index 

In this section we find the eccentricity based 
atom bond connectivity index of chain Octahedron 
structure ABC5 (C H On). 

Theorem 2.6.2. Let C H On for all n ≥ 2, where 
n is odd, be the chain Octahedron structure, then 
the atom bond connectivity index ABC5 (C H On) 
is 

 

 
 

Proof. Let C H On , where n is odd, be the 
chain Octahedron structure contains 5n + 1 vertices 
and 12n edges. 

The general formula of eccentricity based atom 
bond connectivity index is 

 
Using the edge partitioned from Table 5, we 

have the following computations 
 

 

 
 

After some simplification, we obtain 
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Theorem 2.6.2. Let C H On for all n ≥ 2, where 
n is even, be the chain Octahedron structure, then 

the atom bond connectivity index ABC5 (C H On ) 
is 

 

 
 

Proof. Let C H On , where n is even, be the 
chain Octahedron structure contains 5n + 1 vertices 
and 12n edges. 

The general formula of eccentricity based atom 
bond connectivity index is 

 
Using the edge partitioned from Table 6, we 

have the following computations 
 

 

 
 

After some simplification, we obtain 
 

 
 

CONCLUSIONS 

In this paper, we computed the eccentric 
connectivity polynomial EC P (C H On , x), eccentric 
connectivity index ξ(C H On ), total eccentricity 
index ζ (C H On ), average eccentricity index avec(C 
H On ), Atom bond connectivity index ABC5 (C H 
On ) and Geometric arithmetic index GA4 (C H On ) 
of Chain Octahedron Structure. 
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